

Engineer-to-Engineer Note EE-400

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ ® Processors
Contributed by Nithya Kocherlakota and Mahesh Natarajan Rev 1 – September 22, 2017

Copyright 2017, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This application note discusses cache memory management for the Analog Devices SHARC+® processor
family, which is comprised of the ADSP-SC58x/ADSP-2158x and ADSP-SC57x/ADSP-2157x products.
It describes the SHARC+ L1 cache architecture/organization and provides guidelines for managing cache
memory, including:

• Cache configuration

• A usage model

• Coherency

• Optimization techniques

 This EE-note assumes that the reader is familiar with basic cache terminology.

Cache Memory in SHARC+ Processors
The SHARC+ family of processors support code and data storage in on-chip and external memories.
Maximum performance from the SHARC+ core is achieved when the code and data are fetched from
single-cycle access L1 memory; however, multi-cycle access L2 and L3 memories must be leveraged in
most applications to accommodate the full application. For example, audio processing algorithms can be
huge and must be stored externally.

In the previous generation SHARC cores, background DMA code and data overlays were used to
maximize core performance. Managing these overlays became difficult because the overlays needed to be
rewritten to accommodate each generation or variant of the processors. Reasons for the difficulty include:

• Changes in the memory maps (due to changes in physical memory)
• Change in the memory interface affecting latency or throughput
• Added, deleted, or modified software modules

The addition of the on-chip data and instruction caches (data cache and I-cache, respectively) to the
SHARC+ core eliminates the need for overlay-based data and code management. It enables high-

http://www.analog.com/processors

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 2 of 17

performance code execution and reduces the demand on the DDR interface providing better utilization
through the use of burst accesses.

Cache memory can provide code and data at the core clock rate of the processor while automatically
managing the data movement to and from the slower off-chip memory. To achieve the best performance,
critical code and data must be kept in L1 memory, whereas lesser used instructions and data can be kept in
slower, external memories.

A major difference between the previous SHARC processor memory model without cache and the
SHARC+ memory model with cache is the way the memory hierarchy is managed. Without cache, the
programmer manages the hierarchy by bringing the required code and data into L1 memory when needed,
using an overlay approach. In contrast, in a cache-based system, the cache controller manages the
hierarchy. Since the cache controller simplifies managing the memory hierarchy, system development time
is greatly reduced. This is especially true in large systems where it is difficult to program the flow using an
overlay approach; thus, the addition of cache memory provides an advantage in terms of faster
development time and simplified data management.

Cache Organization in the SHARC+ Core
The L1 cache memories coexist with on-chip L1 SRAM and use the same physical space. When the cache
is enabled, part of L1 SRAM space is used for cache (upper portion) and is not accessible to the user.
Since the on-chip L1 SRAM effectively has single-cycle read/write latencies, the cache controller stores
only L2- and L3-based code and data.

 L3 memory includes DMC0 and DMC1, asynchronous memory banks, PCIe data, and SPI
flash memory space, as applicable for each processor variant.

Figure 1 shows the memory subsystem in ADSP-SC58x processor.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 3 of 17

Figure 1: ADSP-SC58x Processor Memory Subsystem

 The SHARC+ instruction and data caches discussed in this EE-note are separate from (and in
addition to) the SHARC and SHARC+ instruction conflict cache, which reduces the latency of
instruction accesses when conflicting with a simultaneous data access over the PM bus.

In the dual-core ADSP-SC58x processors, each SHARC+ core has L1 SRAM of up to 5Mb and its own
L1 cache. Each SHARC+ core L1 cache can be configured independently. There are two data caches (DM
and PM cache) and one I-cache per SHARC+ core. The L1 cache of the SHARC+ core has a bus-based
architecture. The data cache attached to L1 block 1 caches all the external memory access requests coming
over the DM bus (DM cache). Similarly, the data cache attached to L1 block 2 caches all external memory
data access requests coming over the PM bus (PM cache). The I-cache is attached to L1 block 3. The
SHARC+ core supports two caching modes:

• Instruction cache mode - only the I-cache is enabled

• Data cache mode - I-cache, DM cache, and PM cache are all enabled

SHARC+ L1 Cache Parameters

The L1 cache has parameters for configuring block size, line size, and write and replacement policies.
Table 1 describes the L1 cache parameters.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 4 of 17

Parameter Description

Block Size Configurable – 128, 256, 512, or 1024 Kbits

Associativity Two-way set associative

Line size 512 bits

Write policy I-Cache - N/A

Data cache : Write allocate – Write back (Default policy)
 No write allocate – Write through

Replacement policy LRU based

Table 1: L1 Cache Data Operations for Instruction and Data Cache

In addition to the parameters shown in Table 1, L1-cache also supports:
• Full-cache and address range-based locking, write-back and invalidation
• Range-based non-cacheable and write through
• Way-based locking
• DM-PM cache coherency

 Ensure that the cache size is not configured to be larger than the block size.

Cache Operation and Address Decomposition

Understanding the cache address decomposition helps to optimize the cache efficiency in small
applications. Cache index conflicts can be avoided, thus reducing the cache line eviction rate; however,
this static analysis alone does not increase the cache efficiency and must not be considered in isolation.
The efficiency also depends on other factors, including code execution sequence, cache size, etc.

Data Cache Address Decomposition
The 32-bit address (Addr[31:0]) of an incoming data cache access is comprised of a concatenation of
three fields: Tag, Index and Offset, as shown in Figure 2.

Figure 2 : Address Decomposition for Data Cache Accesses

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 5 of 17

The Offset field identifies a unique byte in the cache line. The data cache line size is fixed at 64 bytes, so
a 6-bit Offset field is required to properly encode the location of any individual byte within the line, and
it resides in Addr[5:0].

The Tag and Index fields span the remaining 26 bits in the address (Addr[31:6]), but their widths are a
function of the configured cache size. Specifically, the Index field identifies a unique set within a way in
the cache, and larger cache memory sizes have more sets; thus, more bits are needed to properly encode
them. Consider a cache size of 128 Kbits (16 Kbytes). With 64-byte data cache lines, 256 (16 K/64) cache
lines are required to span the entirety of the cache. Because the data cache is two-way set-associative, there
are 128 (256/2) sets per way in the cache, which means the Index field in this case is 7-bit to access an
individual set, and that field resides at Addr[12:6], thus leaving the remaining 19 bits (Addr[31:13]) for
the Tag field, where an address match to this field determines a cache hit or miss.

I-Cache Address Decomposition
The same concepts apply also to the I-cache, but instructions have 24-bit addressing, as shown in Figure 3.

Figure 3 : Address Decomposition for Instruction Cache Accesses

While data memory is byte-addressable, the minimum instruction width is 16 bits (VISA instructions);
therefore, the step size required to identify a single instruction within a cache line is two bytes. Since the I-
cache line is also 64 bytes in length, 32 locations within each line must be accessible, thus requiring a 5-bit
Offset field (Addr[4:0]) for all cache sizes. The Index and Tag fields span the remaining 19 bits
(Addr[23:5]) and are defined as discussed in the Data Cache Address Decomposition section.

In small applications, code and data placement in external memory can be done in a way that avoids the
Index conflict of two frequently used code/data sections. For more details on the functional description
and operation of the cache controller, refer to the L1 Cache Controller chapter of the SHARC+® Core
Programming Reference [1] manual.

Additional SHARC+ L1 Cache Features
The SHARC+ L1 cache has additional features that can be used to manage the cache, including range
register configuration, locking, invalidation and write through accesses.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 6 of 17

Configurable Range Registers

The L1 cache controller contains eight range register pairs (RR7:0) to specify ranges for non-cacheability,
write-through, write policy selection, locking and range-based invalidation/write-back invalidation. Each
range register pair consists of a start address register and an end address register, which can be configured
after setting the functionality of the pair in the SHL1C_CFG2 register. Figure 4 shows the functions
supported by each range register pair.

Range Register (RR) Pairs Functionality

RR0-RR1 RR2-RR3 RR4-RR7
 Locking range Locking range Write-through range

 Write-Back Invalidation /
Invalidation range

 Non-cacheable range Non-cacheable range

Figure 4 : Range Register (RR) Pair Functionality

CrossCore® Embedded Studio [13] provides the adi_cache_set_range function to configure range
register pairs, and some range registers are used by CCES CRT libraries. See the Support for SHARC+ L1
Cache in CCES section for further details. Further programming guidelines can be found in the L1 Cache
Controller chapter of the SHARC+ Core Programming Reference [1].

Locking

Locking is used to avoid thrashing and ensure that useful buffers remain in the cache. For example,
locking might be used before execution of a loop that would continuously result in thrashing. The cache
can be completely invalidated (flushed) and one or both ways can be locked. Within the loop, as the
instruction or data in the working set is accessed, the cache gets filled. Once the relevant ways are full,
additional accesses result in a miss but no replacements. When both ways in cache contain valid data, are
locked, and there is a read/write miss, that request is directly serviced by external memory.

There are two methods of locking supported:

• Way-Based Locking — each way of the DM/PM/I-cache can be independently locked. While
locked, a valid line in the respective way is not replaced. However, invalid cache lines of a locked
way can be filled.

• Address Range-Based Locking — a data buffer or a section of code can be locked using range
registers. A pair of range registers is selected to define lockable data and code ranges.

Invalidation and Write-Back Invalidation

Invalidation clears the cache unconditionally without writing back to L2/L3 memory. Write-back
invalidation (WBI/Flush) ensures that the cache is cleared and any updated copy in the cache is not cleared
without writing back to L2/L3 memory.
Range-Based Write-Back Validation/Invalidation
Once a pair of range registers is programmed with the start and end address of the data/code segment to be
invalidated or written back and properties selected, the cache controller internally computes the starting
index corresponding to the start address and the number of indexes to be invalidated based on the end

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 7 of 17

address. These values are available in the SHL1C_INV_IXSTART0 and SHL1C_INV_CNT0 registers,
respectively. These registers are running registers, which means that after clearing one index, the value of
the index register increments and the value of the count register decrements. Refer to the SHARC+® Core
Programming Reference [1] manual for complete details and usage restrictions.

Write-Through Accesses

Sometimes, the cache controller does not perform a line fill after detecting a miss. It services the miss
directly from the requested memory location (L2 or DDR). These accesses are serviced as through
accesses, where the access request is forwarded to external memory only if it is found to be uncached. For
complete details on conditions when through accesses are launched, refer to the SHARC+® Core
Programming Reference [1] manual.

SHARC+ Core Accesses Through ARM L2 Cache
The SHARC+ core can access system memory directly or through the ARM L2 cache. This feature is
present only on the ADSP-SC58x/SC57x processors. Refer to the SHARC+® Core Programming
Reference [1] manual for complete details and usage restrictions.

To enable this functionality, complete the following steps:

1. The ARM Cortex®-A5 core must configure the L2 cache controller. The SHARC+ core cannot
access the ARM L2 cache controller registers.

2. Program the address range registers REG_CMMR0_L2CC_START and REG_CMMR0_L2CC_END to
enable the path between the SHARC+ core and system memory through the L2 cache. As these
registers are SHARC+ core MMRs, they are accessible only by the SHARC+ core.

3. Relocate code and data into that address range.

 When the SHARC+ core accesses the system memory through the ARM L2 cache and has its
L1 cache enabled, the data is cached in both L2 and L1 cache. To achieve data coherency
between the ARM and the SHARC+ core at the L2 cache level, the processor provides a
connection between the SHARC+ core and the L2 cache of the ARM core.

Support for SHARC+ L1 Cache in CCES
CCES supports configuring and using the SHARC+ L1 cache using the linker description file (LDF) and
several tailored C run-time (CRT) library functions. This section discusses how to configure, invalidate,
and flush the cache, as well as how to configure the range registers associated with specific cache
functions.

Configuration Cache via the LDF

The LDF defines the memory layout of the processor for a given application, and there are two
possibilities for the LDF file for any given project:

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 8 of 17

• Non-generated (default) – product-specific default .ldf files are furnished in the SHARC/ldf
CCES installation folder. These files are selected as a function of the processor identified in the
project properties when no specific .ldf file is specified for the project and the Startup/LDF add-
in is not included in the system.svc utility.

• Generated – project-specific .ldf files that are created at project inception and updated when
modifications are made via the system.svc utility.

When using generated .ldf files, the cache is configured using the Cache Configuration page on the
Startup Code/LDF tab in the system.svc utility, as shown in Figure 5.

Figure 5 : Cache Configuration Tab

Since the cache memories occupy the same physical L1 instruction and data memory spaces that could
otherwise be used as dedicated L1 SRAM, an enabled cache reduces the available application memory in
the corresponding L1 SRAM space by the amount reserved. The .ldf file must reflect this configuration
in order for applications to be mapped properly throughout the memory system. Making selections using
the pull-downs in Figure 5 controls the definition of specific macros. The macros dictate how the .ldf file
is parsed at link-time by the CCES linker and determine which memory is cache (reserved) and which
memory is SRAM (can be mapped to). For example, consider the section of the .ldf file where the block
3 memory is defined as shown in Listing 1:

 // ----------------------- L1-Block 3 RAM (1 MBit) ---------------------------
 // The instruction cache is attached to block 3. If the size of the cache
 // is 128KB, the whole of block 3 is cache and BLOCK3_RESERVED will be
 // defined.

#if !defined(BLOCK3_RESERVED)
 mem_block3_bw { TYPE(BW RAM) WIDTH(8) START(0x00380000)
#if defined(ICACHE_16KB)
 END(0x0039bfff)

Listing 1: Block 3 Memory Definition in LDF File

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 9 of 17

If 16 KB is selected in the Instruction cache pull-down, the ICACHE_16KB label is defined within the
project, and the linker will set the END boundary for block 3 to 0x0039BFFF, thus reserving the upper
16 KB of block 3 as cache. Similar macros exist for each supported cache size. As noted in the comments
in Listing 1, if the full cache size of 128 KB is selected, the BLOCK3_RESERVED macro is defined, thus
reserving all of L1 block 3 as cache and leaving no SRAM space for application code to be mapped to.

 While using the system.svc utility results in the on-chip memory allocation for the cache
regions being cared for automatically in the project build process for generated .ldf files, it
is left to the user to directly edit non-generated .ldf files to define the required macros to do
the same.

The size of each cache is set independently, and blocks 1 and 2 (for the DM and PM data caches,
respectively) have equivalent macros to those discussed above for block 3. By default, the cache settings
for both generated (as shown in Figure 5) and non-generated .ldf files are set to all three caches enabled
with the minimum size of 16 KB (128 Kbits).

If any cache memory is enabled, the __lib_set_cache function is invoked as part of the CRT start-up
code, using symbols provided by the .ldf.

 Due to silicon anomalies, cache is not enabled in the startup code for projects built for
revision 0.1 ADSP-SC58x silicon, even when explicitly enabled via the system.svc utility.

Cache initialization code disables cache for memory that is reserved for inter-core communication (as
defined by the .ldf) and for the SHARC+ L1 multi-processor (MP) address space. The remaining non-L1
address space is cached. A block of non-cached L2 memory is supported when using the default .ldf files.
The ___l2_uncached_start and ___l2_uncached_end symbols define the range of this non-cached
memory and are used by the startup cache initialization code. This non-cached memory is reserved for
applications using the multi-core API (MCAPI) add-in. Figure 6 provides a view of a CCES project
showing the uncached L2 regions.

Figure 6 : L2 Uncached Regions Reserved for MCAPI Add-in (Default ADSP-SC58x CCES Project)

For more details on the default cache configuration and .ldf files, refer to the CrossCore® Embedded
Studio [13] documentation and On-Line Help sections.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 10 of 17

Cache Invalidation

The CRT library provides a set of routines (#include <sys/cache.h>) that can be used to invalidate the
processor’s instruction and data caches:

• adi_code_cache_invalidate() – clears the instruction and conflict caches and invalidates the
Branch Target Buffer (BTB).

• dcache_invalidate(pm_or_dm, writeback) – pm_or_dm determines whether to clear the PM
(ADI_DCACHE_INV_PM) or DM (ADI_DCACHE_INV_DM) data cache, and writeback controls whether
the cache is flushed back to the source memory (ADI_DCACHE_INV_WB) or not
(ADI_DCACHE_INV_NOWB).

• dcache_invalidate_both(writeback) – clears both the PM and DM data caches with the same
flush (writeback) option as in dcache_invalidate.

• icache_invalidate() – clears the instruction cache.

 The execution time for these routines depends on how much data is modified within the
cache being flushed and the clocks associated with the source memory that the data is being
flushed to. If the cache is disabled, the invalidation isn't performed, but the corresponding
invalidation bits remain set.

Cache Flushing

In addition to full cache invalidation, it may be desired to flush smaller areas of the enabled cache memory.
For this, the flush_data_buffer(start, end, invalidate) routine may be used, which flushes back
to the source memory any changes in the data cache that occur within the address range specified by the
start and end arguments. If the invalidate argument is nonzero, the routine also invalidates the data
cache for the address range so that the next access to the range requires a re-fetch from memory. This
function is user-callable and is called as part of the startup CRT code.

Configuring Range Registers

The CRT provides the adi_cache_set_range(_start, _end, _rr, _range_setting) function to
configure range register pairs. This function sets a cache range register pair (_rr) of SHARC+ SHL1C
core MMRs and the required bits in SHL1C_CFG2 to configure a particular function for that pair
(_range_setting). The _start and _end parameters specify the address range.

 The CRT reserves range register pair 0 (RR0) for the flush_data_buffer()function, RR2
for the non-cached L2 range, and RR3 for the SHARC+ L1 MP addresses. Restrictions on
supported functions among RR pairs exist due to silicon anomaly 20-00-0065. Consult the
appropriate Silicon Anomaly List [6][7] for details.

Figure 7 shows the range register pairs available after the CCES CRT code executes.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 11 of 17

Figure 7: Range Register Pairs Available after CCES CRT Code

The guidelines to use the run-time library routines mentioned in this section are explained in detail in the
CrossCore® Embedded Studio [13] documentation and On-Line Help sections.

Cache Coherency
This section describes features present on the ADSP-SC5xx processors to ensure coherency among the
various cache memories and identifies where additional software and careful planning are necessary when
designing the full memory system for the application.

Coherency Supported in Hardware Design

The DM and PM buses can access the same address range, and both caches can store overlapping regions
of external memory. This could result in two cached copies of a single piece of data having different
values if there were nothing in place to avoid it. The concern for this potential overlap leading to an
incoherent view of memory is mitigated by the DM-PM data coherence mechanism called cross-check
(CC). By design, when a cache miss is detected in the native cache (the cache being actively accessed), the
access is forwarded to the remote cache (the other cache where the source memory could be stored). In the
remote cache, it is determined if data is present before fetching from the source memory.

As discussed, the SHARC+ core performs optimally when data is found in the native cache. For example,
a buffer is marked as PM and is initially accessed and cached in the PM Cache. From that point onward,
PM accesses to the same address occur at the core clock rate as a hit in the PM cache. However, if a DM-
based pointer tries to access the same location (as stored in the PM cache), the access is not exactly at the
core clock rate, even though it is a cache hit, as there is an extra two-cycle stall cross-check hit penalty
incurred for the cache hit in the remote cache.

For more information on the cross-check feature of the DM and PM caches, refer to the “Coherency
between DM and PM Caches” section in the L1 Cache Controller chapter of the SHARC+ Core

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 12 of 17

Programming Reference[1] manual. The examples provided with this EE note help to understand details on
the coherency between data caches as well.

Coherency Considerations for Multi-Core Applications

In multi-core applications where data is shared between the cores, the coherency of the shared variables
and buffers must be maintained in software, which can be achieved in two ways:

• Place the shared variable/buffer in a non-cacheable region as determined by a range register pair
(for the SHARC+ core) or the MMU table (for the ARM core).

• Ensure that all accesses to any cacheable data by a given core are preceded by a cache flush (write
back invalidation) operation by the other core.

The former is the recommended approach, as the cycle overhead associated with frequent cache flushes
and misses is likely to exceed that of direct external memory access.

Incoherency Due to Source Memory Updates Outside the Memory Controller

Coherency can become a problem when cacheable data in source memory is updated by an external means
via accesses that do not go through the memory controller, such as DMA or host/target file I/O. In these
cases, valid data in the cache would not be a match to the source memory after the update, and subsequent
cache hits would result in stale data accesses by the application. To prevent this incoherency, it is
recommended that such regions be made non-cacheable, else the cache must always be invalidated before
attempting the access. Refer to the EE note examples for details.

Incoherency Due to Self-Modifying Code

Coherency between the data caches and the I-cache is not maintained in hardware. Self-modifying code by
definition has instructions that use the DM/PM bus to overwrite the instruction space. If self-modifying
code is present in external memory space and cacheable, it can lead to an incoherent view of memory, as
the PM and DM accesses contained within it could be to other cached locations that would not be updating
the source memory. Therefore, the full cache must be flushed after any cacheable self-modifying code
executes. Alternatively, the problem is avoided altogether if self-modifying code is made non-cacheable or
not used in the application at all.

Optimizing Cache Performance
There are several ways to optimize cache performance including choosing an ideal cache size, increasing
cache line reuse and avoiding conflicts at the system level.

Determining Cache Size and Efficiency

Since the L1 SRAM and cache share the same physical memory, the right tradeoff between L1 SRAM size
and L1 cache size must be determined to maximize code performance. This choice depends on several
application-dependent criteria:

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 13 of 17

• how much performance-critical code or data exists in the application, as this determines the
minimum amount of dedicated L1 SRAM required

• how frequently a particular portion of code or piece of data is accessed

• how certain code structures must be organized to get maximum efficiency (for example, data
structures with non-sequential or irregular access would make inefficient use of the cache)

When looked at in isolation, even if an individual function does not exhibit high cache effectiveness, the
overall system cache efficiency can be quite high. The focus must be on system optimizations around such
functions.

Algorithmic Level

At the algorithmic level, cache efficiency has two locality components:

• Temporal — cache efficiency increases with cache line reuse. Allow each function to do as much
processing on each piece of data as possible to increase data reuse.

• Spatial — cache line size is fixed at 64-byte. Algorithms with well-planned spatial locality request
larger chunks of sequential memory, whereas algorithms having less spatial locality (accessing
small pieces of non-sequential data) will fill cache lines with unneeded data, thus degrading the
cache efficiency.

System Level

At the system level, organizing the data for cache and controlling how the data location is accessed can
increase cache hits.

Avoid Conflict Miss
Avoid conflict misses (Index conflicts) by organizing the data to increase cache hits. As the SHARC+ L1
cache is two-way set-associative, there can be scenarios where two small arrays exist in memory such that
they map to the same cache sets. This means that both arrays could theoretically fit in the cache (if aligned
differently), but they will instead compete for the same group of sets and thrash each other (i.e., the cached
array will be evicted and replaced by the other array that was a cache miss).

Avoid Capacity Miss
Avoid capacity misses by splitting code and data into smaller chunks. If, for example, a 256 KB array
needs to be iterated repeatedly, this data cannot fit into the cache and results in a capacity miss (except the
first access of each line, which is a compulsory miss that would exist even if the cache size were made
infinite). Use smaller working sets of data that are important to the program at the time of execution. If a
working set is bigger than the cache size, then a capacity miss occurs and cache efficiency is reduced.

Decrease DM and PM Cross-Check Hits
Cache performance improves significantly when the mixing of DM and PM data types is minimized.
Therefore, the application should always try to access a specific data location using the same bus (PM or
DM). Avoid accessing a location first through the DM bus and then through the PM bus (and conversely).
This performance improvement occurs automatically when all the code is generated by the compiler, as
DM/PM pointer swap is avoided.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 14 of 17

An example code sequence that results in a cross-check is given in Listing 2:

dm int * pVariableA = 0x20080000;
pm int * pVariableB = 0x200A0000;
*pVariableA = *pVariableA + 1; // Data in address pointed by pVariableA in DM cache
*pVariableB = *pVariableB + 1; // Data in address pointed by pVariableB in PM cache
….
pVariableB = pVariableA; // DM/PM address swap
* pVariableB = * pVariableB +1; /* Accessing data in DM cache over PM bus results
in cross-check hit */

Listing 2: Cross-check

Use PM data only when using DM and PM accesses in parallel, as in type-1 instructions. This practice
helps reduce the PM cache size to a minimum (16 KB) and frees up L1 memory to be used as SRAM.
Hence, partition algorithms to utilize PM and DM appropriately.
Decrease Misaligned Accesses
Although misaligned cache accesses (accesses straddling two cache lines) are supported in the data caches,
these accesses affect cache performance. A cache miss to a misaligned location fetches two cache lines
and takes more time. In the case of cache hits, eight stall cycles are incurred due to the misaligned access.
Aligning data to cache line boundaries helps reduce the occurrence of misaligned cache accesses.

Use of the Locking Range Functionality in the Range Register Pair
Although cache improves performance, the execution time becomes unpredictable due to the dynamic
behavior of the cache (worst case execution time can still be calculated precisely). A particular piece of
code/data can be benchmarked to take a certain number of cycles to execute with a clean cache (all cache
lines are invalidated) and a different number of cycles to execute with dirty cache lines (cache flush and
compulsory miss overhead). Locking this particular code/data in the cache prevents it from getting
replaced, thus also avoiding the overhead of flushing the cache during normal application execution.

Impact of Cache on Real-Time Code Execution

A typical embedded system must follow real-time requirements: it receives ADC data according to a
sample rate, processes the sample, and finally feeds the data to the DAC buffer (which also follows real-
time requirements). For example, the ADC reads and the DAC writes data every 20 µs (maximum) for a
48 kHz sampling system. Exceeding this time budget results in missed data and improper algorithm
execution; therefore, embedded system programmers must properly consider real-time optimization
techniques such as using sample vs block processing, interrupt nesting, changing DMA channel priority
etc.

In a cache-based system, an upper bound for the time taken to get the data into the core can be determined.
Assume that the cache is full with all the lines valid and dirty. The instructions and data must be fetched
from memory outside the cache to replace the existing contents of the cache (cache line write back and
replacement). From this assumption, we can examine whether there is enough time to process the input
data set.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 15 of 17

The same concern is present in a model with no cache memory, where we need to calculate the worst-case
time taken to fetch the data directly from system memory. As such, the factors that affect real-time code
execution are system-dependent and not exclusively a cache consideration.

ADSP-SC58x/ADSP-2158x Throughput Analysis
Table 1 summarizes the throughput numbers observed on the ADSP-SC589 EZ-Kit Lite for SHARC+ core
accesses to L2 and L3 (DDR) memory with cache disabled. These measurements were obtained with the
processor performing sequential read/write accesses to L2/L3 memory at room temperature.

Memory (CLK = Rate) Max Bandwidth1 Reads % Max BW Writes % Max BW

L2 (SYSCLK = 225 MHz) 1800 MBPS ~654 MBPS ~36% ~1781 MBPS ~99%

L3 (DCLK = 450 MHz) 1800 MBPS ~262 MBPS ~15% ~832 MBPS ~46%
1 Theoretical. For 64-bit L2 port, 225 MHz * 8 bytes = 1800. For 16-bit L3 interface with data on both clock edges, 450 MHz * 2 bytes * 2 = 1800.

Table 1. Throughput Measurements for External Accesses Without Cache

As can be seen, non-cached read/write accesses to L2/L3 result in an observed throughput that is a mere
fraction of the theoretical maximum bandwidth. When cache is enabled, despite cache line fills
contributing to some overhead, the theoretical maximum bandwidth throughput can be realized with a
large number of accesses to the same memory addresses, as this increases the cache hit rate that allows for
subsequent single-cycle accesses to the same instructions and data by the core after the accessed location is
stored to the cache memory. For L2 accesses, line fills take ~50 CCLK cycles. For L3 accesses, assuming
the DDR clock is optimally configured as DCLK = CCLK, line fills take ~80 CCLK cycles.

General L1 Cache Considerations
When configuring and accessing the L1 cache, consider the following items:

1. L1 cache uses the upper portion of the L1 memory block. Do not configure the cache size bigger
than the block size.

2. Non-burst and special access zones must be marked as non-cacheable (e.g., OTP memory).
3. SHARC+ core access to the L1 system space (multi-processor space) must be made non-cacheable.
4. Cache events like misses and hits are all uninterruptible. For a read miss event, read requests are

sent to external memory for the complete cache line fill. Interrupt processing can be delayed when
these events occur.

5. Practice caution when using the SMPU with cache. If the SMPU is configured to protect a memory
region from write accesses, instruction fetches from a core are still possible because instructions
are not updated/replaced during runtime. When program memory is used for data, a read access or
cache fill is not possible if the memory is blocked from read accesses. If reads are allowed but
writes are not, then there is an issue with coherency. The cache is filled; but, when the cache is
updated and needs to be written back to the SMPU-protected memory, the write-access is blocked.

6. If cache is enabled and the range registers are configured to set a region as non-cacheable, the
accesses to non-cacheable regions require more cycles than for un-cached accesses.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 16 of 17

7. An 8 KB region of L2 memory must be made non-cacheable prior to calling boot ROM APIs from
a SHARC+ core, as follows.

On ADSP-SC58x/ADSP-2158x processors:
#define PARAM_ROM_SECURE_WORKSPACE_START 0x200BE000

#define PARAM_ROM_SECURE_WORKSPACE_END 0x200BFFFF

On ADSP-SC57x/ADSP-2157x processors:

#define PARAM_ROM_SECURE_WORKSPACE_START 0x200FE000

#define PARAM_ROM_SECURE_WORKSPACE_END 0x200FFFFF

8. During debug, if the CCES debugger transitions into halt mode via breakpoint or single-step, all of
the ADSP-SC58x and ADSP-SC57x L1/L2 caches are flushed (including the SHARC L1 caches);

hence, the captured cache data is no longer meaningful. The printf functionality also flushes the
SHARC+ L1 cache. Consider this functionality while benchmarking code with L1 cache enabled.

References
[1] SHARC+ Core Programming Reference. Revision 1.0, May 2017. Analog Devices, Inc.

[2] ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference. Preliminary Revision 0.4, February 2017. Analog
Devices, Inc.

[3] ADSP-SC57x/ADSP-2157x SHARC + Processor Hardware Reference. Preliminary Revision 0.1, June 2016. Analog
Devices, Inc.

[4] SHARC+ Dual Core DSP with ARM Cortex-A5 ADSP-SC582/SC583/SC584/SC587/SC589/ADSP-21583/21584/21587
Data Sheet. Revision A, July 2017. Analog Devices, Inc.

[5] SHARC+ Dual Core DSP with ARM Cortex-A5 ADSP-SC570/571/572/573/ADSP-21571/21573 Data Sheet. Revision 0,
June 2017. Analog Devices, Inc.

[6] SHARC+ Dual Core DSP with ARM Cortex-A5ADSP-SC582/583/584/587/589/ADSP-21583/584/587 Silicon Anomaly
List. Revision C, March 2017. Analog Devices, Inc.

[7] SHARC+ Dual Core DSP with ARM Cortex-A5 ADSP-SC570/571/572/573/ADSP-21571/573 Silicon Anomaly List.
Revision B, July 2017. Analog Devices, Inc.

[8] CrossCore® Embedded Studio 2.6.0 Assembler and Preprocessor Manual. Revision 2.0, June 2017. Analog Devices, Inc.

[9] CrossCore® Embedded Studio 2.6.0 Linker and Utilities Manual. Revision 2.0, June 2017. Analog Devices, Inc.

[10] CrossCore® Embedded Studio 2.6.0 Loader and Utilities Manual. Revision 2.0, June 2017. Analog Devices, Inc.

[11] CrossCore® Embedded Studio 2.5.0 C/C++ Compiler Manual for SHARC Processors. Revision 1.9, June 2017. Analog
Devices, Inc.

[12] CrossCore® Embedded Studio 2.6.0 C/C++ Library Manual for SHARC Processors. Revision 1.9, June 2017. Analog
Devices, Inc.

[13] CrossCore® Embedded Studio. Revision 2.6.0, Analog Devices, Inc.

Using Cache on ADSP-SC5xx/ADSP-215xx SHARC+ Processors Page 17 of 17

Document History

Revision Description

Rev 1– September 18th, 2017
by Mahesh Natarajan and Nithya Kocherlakota

Initial Release

	Introduction
	Cache Memory in SHARC+ Processors
	Cache Organization in the SHARC+ Core
	SHARC+ L1 Cache Parameters
	Cache Operation and Address Decomposition
	Data Cache Address Decomposition
	I-Cache Address Decomposition

	Additional SHARC+ L1 Cache Features
	Configurable Range Registers
	Locking
	Invalidation and Write-Back Invalidation
	Range-Based Write-Back Validation/Invalidation

	Write-Through Accesses

	SHARC+ Core Accesses Through ARM L2 Cache
	Support for SHARC+ L1 Cache in CCES
	Configuration Cache via the LDF
	Cache Invalidation
	Cache Flushing
	Configuring Range Registers

	Cache Coherency
	Coherency Supported in Hardware Design
	Coherency Considerations for Multi-Core Applications
	Incoherency Due to Source Memory Updates Outside the Memory Controller
	Incoherency Due to Self-Modifying Code

	Optimizing Cache Performance
	Determining Cache Size and Efficiency
	Algorithmic Level
	System Level
	Avoid Conflict Miss
	Avoid Capacity Miss
	Decrease DM and PM Cross-Check Hits
	Decrease Misaligned Accesses
	Use of the Locking Range Functionality in the Range Register Pair

	Impact of Cache on Real-Time Code Execution

	ADSP-SC58x/ADSP-2158x Throughput Analysis
	General L1 Cache Considerations
	References
	Document History

