

Engineer-to-Engineer Note EE-364

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementing Second-Stage Loaders for ADSP-BF60x Blackfin®

Processors

Contributed by Harrington, David Rev 1 – November 18, 2014

Copyright 2014, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

While ADSP-BF60x Blackfin® Processors

(hereafter referred to as ADSP-BF609

processors) natively support numerous boot

modes‎
[1]

, there may be applications that require

additional boot time functionality. To support

extensions to the boot process, a second-stage

loader (SSL) can be introduced, where a small

application is loaded into the processor using a

natively supported boot mode. This SSL kernel

can be used to customize the configuration of the

processor and/or perform automated tasks as part

of the boot process.

This EE-Note describes how to write a SSL for

ADSP-BF609 processors to selectively boot one

of multiple executable files (DXEs) from SPI flash

memory using basic GPIO push-buttons during

system start-up. The example code provided in

the associated .ZIP file has been tested with

CrossCore® Embedded Studio (CCES) version

1.1.0 and with the ADSP-BF609 EZ-KIT®

evaluation board revision 1.0. When using the

associated project files, make sure that the latest

Board Support Package (BSP) for the ADSP-

BF609 EZ-KIT board is installed

(www.analog.com/BF609EZBoard).

Second-Stage Loader (SSL)

A second-stage loader is a stand-alone application

that is executed at boot time before the actual

application is dynamically loaded into memory. It

has its own executable file (DXE) and hence, it will

consume space in the boot source memory as part

of the loader image (LDR).

First of all, the SSL is loaded into the first

memory location in L1 instruction SRAM. Then,

it performs whatever tasks it is intended to do,

and it finally completes the boot process,

overwriting itself with the actual end application.

The example project associated with this EE-

Note allows for multiple DXE applications to be

selected among at boot time, employing a simple

GPIO interface to utilize two push-button

switches available on the ADSP-BF609 EZ-KIT

board to serve this purpose.

The method used in this document creates three

separate LDR images – the SSL itself and two

unique LED blink applications, LED_1 and

LED_2 – each of which is programmed into

different offsets within the SPI flash memory, as

shown in Table 1.

Button DXE SPI Memory Offset

-- SSL 0x000000

PB1 LED_1 0x100000

PB2 LED_2 0x200000

Table 1. SPI Memory Map

Implementing Second-Stage Loaders for ADSP-BF60x Blackfin® Processors (EE-364) Page 2 of 5

The SSL boots from SPI memory and configures

the processor to accept PB1 and PB2 as GPIO

inputs, at which point it idles the processor until

PB1 or PB2 are pressed. The push-buttons then

determine which of the two DXEs to boot into the

processor and execute.

Booting Applications

ADSP-BF609 processors feature instruction

ROM (Read Only Memory) space that includes a

function for selecting the memory address to boot

from called rom_Boot(). Detailed information

on the functions contained in L1 instruction ROM

can be found in the ADSP-BF60x Blackfin

Processor Hardware Reference‎[1]‎[2]
. To use the

ROM API, the file bfrom.h needs to be included

in the project, as follows:

#include <bfrom.h>

This file is provided with CCES (default

installation path):

C:\Analog Devices\CrossCore Embedded

Studio 1.1.0\Blackfin\include

In the SSL, rom_Boot() is called in the interrupt

service routine (ISR) for each of the two push-

buttons:

rom_Boot(LED_1,0,0,0,0x20210002,0);

rom_Boot(LED_2,0,0,0,0x20210002,0);

LED_1 and LED_2 are byte offsets into memory,

expressed in integer format. These are the

memory locations that the corresponding LDR

images need to be loaded to in the SPI flash

memory. 0x2021002 is the dBootCommand

parameter, which configures the boot mode to

SPI master and sets the SPI clock, configures the

SPI chip-select output channel and enables device

detection (for more details about dBootCommand ,

see ‎[1]‎[2]).

New to ADSP-BF609 processors boot ROM is

the ability to choose which chip-select output is

to be controlled for use during SPI booting, as

any of the SPI_SELn outputs can be used for SPI

device selection via dBootCommand. This allows

for multiple SPI flash modules to be connected to

SPI0 or SPI1, and booted from using the

rom_Boot() API.

The rom_Boot() function will not

correctly work while using an In-Circuit-

Emulator (ICE) or Debug Agent. In

order to test the rom_Boot() function,

your application must be flashed to

memory and booted without an attached

emulator.

Creating LDR Files

To create multiple DXEs, each loader file (LDR)

needs to be created as a binary file. To create the

necessary LDR files, do the following for each of

the three example projects provided in the

associated .ZIP file:

If the application you are booting is a

dual-core application, you must make

sure your SSL is also a dual-core

application to ensure proper core

initialization, which is why this example

has the LDR file being generated from

Core1 application.

1. In CCES, under the Project Explorer

window, select Core1 of the desired project

by clicking on the project name, and then go

to File -> Properties from the menu bar.

2. On the left-hand pane, select, C/C++ Build -

>Settings.

3. Click on the Build Artifact tab.

4. Under Artifact Type, select Loader File.

Implementing Second-Stage Loaders for ADSP-BF60x Blackfin® Processors (EE-364) Page 3 of 5

Figure 1. CCES Loader Settings

5. Return to the Tool Settings tab and select

the General window under CrossCore

Blackfin Loader. Select the following

options:

 Boot Mode: SPI0 master

 Boot Format: Binary

 Output Width: 16 bits

 Use default start address checked

 Initialization file (-init). Use

the default initialization file provided with

CCES. Browse to (default installation path):

C:\Analog Devices\CrossCore Embedded

Studio 1.1.0\Blackfin\ldr

Select “BF609_init_v01.dxe”.

The Initialization (init) file is responsible for

configuring the registers for external memory

accesses during the boot process of your

application. The init file is loaded before your

application, ensuring that external memory is

properly configured before your application

makes any attempts to access it.

Figure 2. CCES Loader File Options

6. Click on Additional Options of the

CrossCore Blackfin Loader.

7. Click on the Add button and add the following

onto a single line to generate an LDR that

contains both Core0 and Core1:

../../BF609_SSL_Core0/Debug/BF609_SS

L_Core0.dxe -

NoFinalTag=../../BF609_SSL_Core0/Deb

ug/BF609_SSL_Core0.dxe

If your pathnames contain spaces, they

must be cared for by employing double-

quotes and escape characters, e.g.,
“C:/Directory\ With\

Spaces/Debug/YourProject_Core0.d

xe”.

8. Click OK and build the project in the default

Debug mode by going to Build->Build

Project or by hitting F7 on your keyboard.

The generated LDR file will be located in the

\Debug folder in your project directory.

Implementing Second-Stage Loaders for ADSP-BF60x Blackfin® Processors (EE-364) Page 4 of 5

Programming Multiple LDR Files

to SPI Flash Memory

After building the LDR images for the SSL and

each of the applications, they need to be

programmed into the flash memory. CCES

provides the Command Line Device Programmer

(CLDP) to load applications into flash memory.

More information on the CLDP can be found in

the Help Contents in CCES.

To utilize the CLDP to write the three LDRs of

interest to the SPI flash memory, open a

command prompt and navigate to the root

directory for CCES (default):

C:\Analog Devices\CrossCore Embedded

Studio x.x.x

where x.x.x refers to the tools release version

used.

Once there, execute the CLDP three times, as

follows:

The default directory for the device

programmer driver is: C:\Analog

Devices\ADSP-

BF609_Evaluation_Board-

Relx.x.x\BF609_EZ-

Board\Blackfin\Examples\Device_P

rogrammer\serial

1. Load BF609_SSL_Core1.ldr into flash

memory:

cldp –emu kit –proc ADSP-BF609 –cmd

prog –driver “C:\Analog

Devices\ADSP-BF609_Evaluation_Board-

Rel1.1.0\BF609_EZ-

Board\Blackfin\Examples\Device_Progr

ammer\serial\bf609_w25q32bv_dpia.dxe

” -format bin -erase all –offset 0 –

file “<path

name>\BF609_SSL_Core1.ldr”

2. Load LED_1.ldr into flash memory:

cldp –emu kit –proc ADSP-BF609 –cmd

prog –driver C:\Analog Devices\ADSP-

BF609_Evaluation_Board-

Rel1.1.0\BF609_EZ-

Board\Blackfin\Examples\Device_Progr

ammer\serial\bf609_w25q32bv_dpia.dxe

” -format bin -erase affected –

offset 1048576 –file “<path

name>\LED_1.ldr”

3. Load LED_2.ldr into flash memory:

cldp –emu kit –proc ADSP-BF609 –cmd

prog –driver “C:\Analog

Devices\ADSP-BF609_Evaluation_Board-

Rel1.1.0\BF609_EZ-

Board\Blackfin\Examples\Device_Progr

ammer\serial\bf609_w25q32bv_dpia.dxe

” -format bin -erase affected –

offset 2097152 –file “<path

name>\LED_2.ldr”

In the above command lines, <path

name> is the full path to the LDR files.

Also, –offset must be in decimal form,

it cannot be in HEX. 0x100000 is

1048576 in decimal, and 0x200000 is

2097152 in decimal.

Figure 3. Command Line Device Programmer

Once all three LDR images are programmed into

the SPI memory, the example application can be

run as intended.

Using the SSL Example Program

After all three LDR files are programmed into flash

memory, reset or power-cycle the ADSP-BF609

EZ-KIT board to load and run the SSL. Once the

SSL is loaded, the processor idles awaiting user

input before continuing with the boot process.

At this point, pushing the push-buttons PB1 or

PB2 will select between the two executable files

LED_1 and LED_2. Specifically, pressing PB1 will

boot the LED_1 application from the SPI flash

memory offset 0x100000 (1048576 bytes),

whereas pressing PB2 will boot the LED_2

Implementing Second-Stage Loaders for ADSP-BF60x Blackfin® Processors (EE-364) Page 5 of 5

application from SPI flash memory offset

0x200000 (2097152 bytes).

As discussed, the SSL kernel is a temporary

application that overwrites itself with the actual

end application as part of the two-stage boot

process. As such, once the SSL is booted, it will

be destroyed when the processor boots the blink

application of choice. At this point, the blink

application is resident on the processor until the

next reset or power-cycle, at which point the SSL

will boot again and await user input.

References

[1] ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609 Blackfin Dual Core Embedded Processors Data Sheet.

Rev. A, February 2014. Analog Devices, Inc.

[2] ADSP-BF60x Blackfin Processor Hardware Reference. Rev. 0.5, February 2013. Analog Devices, Inc.

[3] CrossCore Embedded Studio Loader and Utilities Manual. Rev. 1.3, May 2014. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – November 18, 2014

by D. Harrington

Initial Release

	Introduction
	Second-Stage Loader (SSL)
	Booting Applications
	Creating LDR Files
	Programming Multiple LDR Files to SPI Flash Memory
	Using the SSL Example Program
	References
	Document History

