

AN-1191
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADV7182 CMRR Measurements Across Frequency Using ADSP-BF527

by Witold Kaczurba

Rev. 0 | Page 1 of 8

INTRODUCTION
This application note describes techniques for measuring
the noise spectrum for video ADCs using the Blackfin® ADSP-
BF527. An external noise can have negative impact on video
quality. Finding a source of noise might be difficult, especially
in the complex systems using digital processing and/or radio
frequency. The measurement is especially important in case of
differential video using long cable runs (such as in automotive
applications using reversing cameras with cables going from the
head unit to the back of the car).

The method described in this application note allows analysis
of noise across a frequency spectrum as well as measuring the
noise floor level of video ADC. For this purpose, the ADV7182
is set into raw ADC mode that constantly converts all incoming
analog signals into 10-bit digital codes output via pixel lines
{ P[7:0], HS, VS } with an accompanying clock. In this
particular mode, the synchronization signal is not processed.

The ADC is connected to a 10 kHz differential signal generator
providing a reference 1 V peak-to-peak signal.

The ADSP-BF527 (or similar) acts as a data grabber trans-
ferring samples straight to the SDRAM. Once collected, data
can be transferred to a PC for further processing and to
perform FFT.

SINE WAVE
GENERATOR

(DIFFERENTIAL)
ADV7182AIN+

AIN–

DATA
CLK ADSP-BF527

EXTERNAL
SDRAM

MEMORY

PC WITH
MATLAB,

PYTHON, OR
OCTAVE

USB

11
48

5-
00

1

Figure 1. Simplified Setup

http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
www.analog.com

AN-1191 Application Note

Rev. 0 | Page 2 of 8

TABLE OF CONTENTS
Introduction .. 1
CMRR Measurement ... 3

ADV7182 Script and Schematics ..3
Blackfin as a Data Grabber ...5

REVISION HISTORY
6/13—Revision 0: Initial Version

Application Note AN-1191

Rev. 0 | Page 3 of 8

CMRR MEASUREMENT
The measurements of CMRR must be performed across
frequency. Factors that can have an impact on measurements
are differential pairs that are not kept together, termination
mismatch, and layout practices. The input resistor matching
has a crucial effect on CMR measurement. Matching should
be of 0.1% accuracy.

Test 1: Adjusting and Collecting Data for Single-Ended
Signal

During the first measurement test, a sine wave of known
frequency should be applied to one of the terminals (AIN+)
whereas the other should be connected to ground. The ampli-
tude of the sine wave should be adjusted to utilize the full range
of the ADC, without saturating the ADC. The digital data
should be collected using a digital grabber.

Test 2: Measuring

During the second measurement, a sine wave of the same
frequency and amplitude as in the first test should be applied
to both terminals. Common-mode rejection of the ADC amp
will reject the sine wave.

Result

In order to quantify results, data collected from the digital
output from the first and the second test should be plotted in
a semi-logarithmic scale showing absolute FFT values across
frequency. The comparison between plots from Test 1 and
Test 2 should provide information on how common mode is
rejected. Since this data is presented in a logarithmic scale—
subtracting the result of Test 1 from the result from Test 2 for
the particular frequency should result in the CMRR in dB. The
code presented in Listing 3 has been adjusted to show the peak-
to-peak sine wave at 0 dB. The example shown in Figure 2 and
Figure 3 shows −59 dB CMRR attenuation for 1% resistors. Lab
results with 0.1% matched resistors showed −70 dB attenuation.

The data used for these figures has been generated for
illustration purposes.

0

–20

–40

–60

–80

–100

–120

–140

–160
0 500k 1.0M 1.5M 2.0M 2.5M

SP
EC

TR
U

M
 (d

B
)

FREQUENCY (Hz) 11
48

5-
00

2

Figure 2. Sine Wave (45772 Hz) of Full 10-Bit Range Adjusted to 0 dB

–180

–160

–140

–120

–100

–80

–60

300k 400k 500k 600k 700k

SP
EC

TR
U

M
 (d

B
)

FREQUENCY (Hz) 11
48

5-
00

3

Figure 3. Frequency Spectrum Shows a −59 dB Spike

at 45772 Hz (Synthesized Data)

ADV7182 SCRIPT AND SCHEMATICS
The following script sets the ADV7182 in ADC sampling mode,
using CVBS_P on AIN1 and CVBS_N on AIN2. Figure 3 shows
the schematic that includes input recommended termination for
the ADV7182 as well as connection to ADSP-BF527 capturing
the data (Port F and Port J).

http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf

AN-1191 Application Note

Rev. 0 | Page 4 of 8

Listing 1. Special ADV7182 I2C Writes

42 0F 00 ; Exit Power Down Mode
42 00 0E ; INSEL = CVBS_P in on Ain 1, CVBS_N in on Ain2
42 02 04 ; Analog Standard Selection
42 07 00 ; Auto-detect off
42 03 0C ; Enable Pixel & Sync output drivers
42 1D 40 ; Enable LLC output driver
42 13 00 ; Enable INTRQ output driver
42 64 10 ; Power up Xtal path
42 14 00 ; Special ADC test mode
42 52 C0 ; Special ADC test mode
42 5F 08 ; Special ADC test mode
42 6C 80 ; Special ADC test mode
42 60 A0 ; Special ADC test mode
42 28 80 ; Special ADC test mode
42 1D 40 ; Special ADC test mode

Locate close to DUT and same side as DUT

Locate close to DUT
 and same side as DUT

All decoupling capacitors to be located close to ADV7182
Reset

Power Supply Decoupling

To Blackfin
1

D
G

N
D

2
D

VD
D

IO

3
D

VD
D

4
D

G
N

D

5P7
6P6
7P5
8P4
9P3
10P2
11P1
12P0

13
D

VD
D

14 XTALP15 XTALN

16
PV

D
D

17 AIN118 AIN2

19 VREFP20 VREFN

21
A

VD
D

22 AIN323 AIN4

24INTRQ

25 RESET

26 ALSB

27 SDATA28 SCLK

29VS/FIELD/SFL 30HS

31 PWRDWN

32LLC

33
EP

A
D

U2

ADV7182/7280

INTRQ

Y128
.6

36
36

M
H

z

C18

47pF

C17

47pF

R
1N
I

C
2

N
I

C
3

N
I

R5
4K7

C14

0.1uF

R633r

C37

0.1uF

C38

10nF

C39

0.1uF

C40

10nF

C41

0.1uF

C42

10nF C44

0.1uF

C45

10nF

C46

10nF

C47

0.1uF

R37
4K7

C63

4.7uF

S2

R41
4K7

R30-A 33r
R30-B 33r
R30-C 33r
R30-D 33r
R31-A 33r
R31-B 33r
R31-C 33r
R31-D 33r

J3

J2

C
5

0.
1u

F

C
6

0.
1u

F

J4

J6

R28
430r

R29
430r

R33 1K3

R35 1K3 C
8

0.
1u

F

C
19

0.
1u

F

R20
75r

R2
75r

R7 1K3

R8 1K3

R9
430r

R10
430r

GND

DVDD_1.8V PVDD_1.8V

PF0
PF1

AIN1
AIN2
AIN3
AIN4

SDA
SCL

GND DVDDIO_3.3V

DUT_RESET

DVDD_1.8V

GND

AVDD_1.8V

GND

DVDDIO_3.3V PVDD_1.8V

GND
GND

DUT_RESET

GND

DVDDIO_3.3V

G
N

D
G

N
D

PJ1/PPICLK

DVDDIO_3.3V

AVDD_1.8VDVDDIO_3.3V

GND

GND

GND

GND

GND

G
N

D

PF2
PF3
PF4
PF5
PF6
PF7
PF8
PF9

11
48

5-
00

4

Figure 4. ADV7182 Connection to Blackfin

http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf

Application Note AN-1191

Rev. 0 | Page 5 of 8

BLACKFIN AS A DATA GRABBER
The Blackfin family features a parallel port interface (PPI)
allowing for bidirectional parallel data transfers of various
types. Those include video transfers such as BT656, raw data
with and without additional external synchronization signals.
Since the ADV7182 is configured in raw ADC mode (without
processing synchronization signals), the Blackfin must be
configured to receive incoming raw data, without external
synchronization signals, with a clock rate 27.0 MHz or
28.6363 MHz. The built-in PPI interface is configured to
perform data transfers facilitating DMA mechanism allowing
for direct transfer to external SDRAM memory. The Blackfin’s
core does not participate therefore in receiving data and can be
occupied to execute other code.

Displaying and Analyzing Data on the PC

One of the easiest ways of performing FFT and displaying
graphical representation without buying an expensive math-
ematical package is Python(x, y). This software package
contains tools and libraries for mathematical calculations and
provides visual representation (charts, plots, and so on). The
package allows the performance of fast Fourier transforms and
displays this information in a very quick and convenient way on
a PC.

Blackfin Connection to PC over USB

The Blackfin DSP processor family offers a USB interface and a
UART connectivity that can be used for data transfer to the PC
and to maintain link. Blackfin’s USB interface. It can be
programmed to work in a number of various modes, including
CDC, HID, mass storage, or general bulk.

This application note outlines how to modify existing Visual
DSP++ 5.0 USB examples into general bulk mode allowing for
data transfer with a PC. The example is based on the ADSP-
BF527, but can be easily transferred to suit other USB
interfaces.

Blackfin Code

The original source code covered in the VDSP++ examples
allows for a number of certain USB commands. In order to
facilitate ADV7182 programming via an I2C interface and
setting Blackfin’s PPI mode that grabs the data, three additional
commands were added into the code: CONFIGURE_ADV,
GRAB_DATA, and READ_VIDEO_DATA. The first one
configures the ADV part using the I2C interface (See Listing 1)
into RAW-ADC mode in which data is sampled at the XTAL
clock frequency and output to the pixel output port without
processing syncs. The next function configures the PPI interface
to read data from the pixel port (refer to Listing 2). The last one
(READ_VIDEO_DATA) allows data to be sent to the host
computer.

http://www.analog.com/adv7182?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
http://www.analog.com/adsp-bf527?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf

AN-1191 Application Note

Rev. 0 | Page 6 of 8

Listing 2. PPI Configuration

//Configuring PPI pins PF0..PF15 to PPI

*pPORTF_MUX = 0x0000;
*pPORTF_MUX |= (1 << 12); // Enable PPICLK pin
*pPORTF_FER = 0xFFFF; // PF0..PF15 to PPI func.
//Zeroing registers in case the hold previous values

*pPPI_CONTROL = 0;
ssync();
*pDMA0_CONFIG = 0;
ssync();

//Configuring PPI and DMA:
// X_COUNT: 1024 samples * 2 bytes = 2048 bytes per line
// Y_COUNT: 1024 lines * 2048 bytes = 2097152 bytes total

*pDMA0_START_ADDR = frame_raw_buffer1;
*pDMA0_X_COUNT = 1024;
*pDMA0_Y_COUNT = 1024;
*pDMA0_X_MODIFY = 2; // 2 byte data
*pDMA0_Y_MODIFY = 2;
*pDMA0_CONFIG=FLOW_STOP|DMA2D|WDSIZE16| WNR;
ssync();

// PPI Configuration (uses only PPICLK, no frame syncs)
// 16-bit data, 0 framesync with internal trigger, PPI receiver

*pPPI_CONTROL=DLEN_16| FLD_SEL|PORT_CFG| XFR_TYPE;
 *pPPI_DELAY = 0;
*pPPI_COUNT = 1024 - 1;
ssync ();

// Enabling DMA and PPI
*pDMA0_CONFIG |= DMAEN; //Enable DMA0
ssync();
*pPPI_CONTROL |= PORT_EN; //Enable PPI
ssync();

The VDSP++ project can be downloaded from Analog Devices
EngineeringZone®.

Host Application

The host application has been simply extended to match
additional functions that Blackfin offers. CONFIGURE_ADV,
GRAB_DATA require no additional data to be transferred,
whereas function READ_VIDEO_DATA splits the 2 megabytes
buffer into a number of 65536-byte long transmission bulks.

All functions were implemented in Visual C++ in a manner
allowing for execution from the command line.

hostapp.exe -b Configures ADV7182 part

hostapp.exe -g Configures Blackfin for grabbing
data

hostapp –I FILE
START COUNT

Dumps the COUNT-bytes from the
device to FILE at START address

The received file contains 16-bit data grouped into 2-byte codes,
with the first byte representing the less significant byte (PF7 to
PF0) and then the most significant byte (PF15 to PF8).
Processing the Received Data

Once received, data can be processed and its frequency
spectrum can be shown using the PC. Listing 3 shows the
simplified processing of a file containing captured data and
displaying its frequency spectrum. The code is written in
Python(x,y). For simplicity, the example does not apply to
windowing or any filtering.

http://ez.analog.com/docs/DOC-2928?doc=an-1191.pdf
http://www.analog.com/adv7182?doc=an-1191.pdf

Application Note AN-1191

Rev. 0 | Page 7 of 8

Listing 3. Example Python(x,y) Script

import time
from pylab import plot, show, title, xlabel, ylabel, subplot
from scipy import fft, arrange
from math import log10

Fs = 28.6363E6
pix_scale = 4

def newlog10(x):
 # Returns -90dB for log10(0) - in case FFT outputs zeros
 if x == 0:
 return -90 # -90dB
 return log10(x)

def scale_down(data, pix_scale):
 output = []
 if pix_scale <> 1:
 for i in range(0, len(data), pix_scale):
 output.append(round(sum(data[i:i+pix_scale])/float(pix_scale)))

 return output
 return data

def show_plots(data, t, Fs=28.6363E6, fctr=242):
 global pix_scale
 subplot(2,1,1) # plotting signal in time-domain
 plot(t[::pix_scale],scale_down(data, pix_scale))
 xlabel('Time')
 ylabel('Amplitude')
 subplot(2,1,2)

 Y = abs(fft(data))
 for i in range(0, len(Y)/2):
 Y[i] = ((float(Y[i]))/(len(Y)))/fctr
 Y = Y[range(len(Y)/2)] # trimminig to first half
 frq = arange(len(Y))/float(len(Y)) * (Fs / 2)
 for i in range(0, len(Y)): # displaying in semi-log-scale
 Y[i] = 20 * newlog10(Y[i])

 plot(frq,Y,'r') # plotting signal in frequency-domain
 xlabel('Freq (Hz)')
 ylabel('log10|Y(freq)|')
 show()

def read_file(filename, nbits=10):
 f = open(filename,'rb')
 bin_data = f.read()
 data = []
 for i in range(0, len(bin_data)-1, 2):
 bit_mask = (2<<(nbits-1)) – 1
 cur_value = ((ord(bin_data[i]) + (ord(bin_data[i+1]) *\ 256)) & bit_mask)
 data.append(cur_value)
 return data

Main part:
data = read_file('data.bin', 10)
for i in range(0, len(data)): # remove DC component
 data[i] = data[i] – 512
t = (arange(0, len(data)))/(Fs) # 1Msamples
show_plots(data, t)

AN-1191 Application Note

Rev. 0 | Page 8 of 8

50

–200

–150

–100

–50

0

0 161412108642

SP
EC

TR
U

M
 (d

B
)

FREQUENCY (MHz) 11
48

5-
00

1

Figure 5. Frequency Spectrum 0 MHz to 14.31 MHz for 10 kHz Sine Wave

50

–150

–100

–50

0

0 40302010

SP
EC

TR
U

M
 (d

B
)

FREQUENCY (kHz) 11
48

5-
00

6

Figure 6. Frequency Spectrum 0 kHz to 50 kHz for 10 kHz Sine Wave

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2013 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN11485-0-6/13(0)

http://www.analog.com
http://www.analog.com

	Introduction
	Revision History
	CMRR Measurement
	Test 1: Adjusting and Collecting Data for Single-Ended Signal
	Test 2: Measuring
	Result
	ADV7182 Script and Schematics

	Blackfin as a Data Grabber
	Displaying and Analyzing Data on the PC
	Blackfin Connection to PC over USB
	Blackfin Code
	Host Application

	Processing the Received Data

