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ABSTRACT
As gallium nitride (GaN) power FETs become readily available for power designers to use, their promise
of performance improvement with higher efficiencies and greater power densities can begin to become
realized. By having better material properties over silicon, loss elements such as on-state resistance
Rds(on) and output capacitance Coss are smaller for an equal die area. These GaN power FET devices,
such as the LMG3410, are typically offered in high electron mobility transistor (HEMT) structures, which
along with maximizing the material property benefits eliminate the reverse recovery Qrr when the device
operates in third quadrant mode (conduction from source to drain). These benefits allow GaN power FETs
to operate faster and at higher frequencies than previously capable. With typical slew rates around 30
V/ns to 100 V/ns at operating voltages around 380 V to 480 V, printed circuit board (PCB) layout
optimization is even more essential since parasitic inductances and capacitances from poor layouts can
drastically reduce performance or even prevent operation. When pushed to their limits to maximize system
gains power GaN FETs provide the device can degrade and potentially overheat without a carefully
designed thermal system to dissipate the generated heat. To prevent these problems from hampering
designs and limiting performance layout recommendations, peripheral component selection and thermal
system design are discussed.
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1 Introduction
In order to maximize the performance benefit of the LMG3410, a robust PCB layout is essential. While
there are design rules that help improve performance for one parameter, they also can cause another
parameter to become worse. This requires an understanding of all the main design tradeoffs to create an
optimized layout. While following design recommendations for lower voltage GaN FETs are recommended
for proper operation, the higher voltages seen by the LMG3410 requires special consideration to insure
proper operation (see SNVA729).

1.1 Parasitic Inductance
By having smaller gate capacitance, output capacitance and on state resistance, GaN FETs are able to
switch much faster with less loss. The LMG3410 has a user-controllable slew rate from 30 V/ns to 100
V/ns. While this helps reduce the power loss during each switching transition, it also increases the voltage
and current slew rates. As Equation 1 shows, by increasing the current slew rate the voltage induced
across any parasitic inductor is increased, increasing voltage overshoot on the power device.

where
• Llk is the parasitic inductance
• di/dt is the change of current with respect to time
• V is the induced voltage (1)

Since high slew rates are desired to minimize switching transitions and reduce loss, it is important to keep
the parasitic inductance as small as possible. One key current loop is the switching cell and bypass
capacitor. Figure 1 highlights this loop for a half bridge configuration, which includes the high side FET,
low side FET and bypass capacitor.

Figure 1. Critical Power Stage Current Loop

Any closed current loop has an inductance, which can be approximated with Equation 2 (see Inductance
Formulas for Circular and Square Coils).

where
• μ0 is the permeability of free air (4π×10-7)
• μr is the relative permeability (1 for FR-4)
• h is the space between conductors
• w is the width of the conductor
• l is the length of the conductor
• Ltrace is the parasitic inductance of the trace (2)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
http://www.ti.com/lit/pdf/SNVA729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1456772&isnumber=31320
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1456772&isnumber=31320
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The parasitic inductance Ltrace can be minimized by reducing the space between traces h and length l
while maximizing the width w. By placing all the components on the top layer of a PCB, and have the
return path on the next layer of copper, the space between conductors h can be greatly reduced, creating
an optimal layout (see Understanding the Effect of PCB Layout on Circuit Performance in a High-
Frequency Gallium-Nitride-Based Point of Load Converter).

Figure 2. Optimal Layout (Cross-Section View)

By reducing this inductance with an optimized layout, the voltage overshoots that increase stress and
losses are reduced, improving performance of the LMG3410.

1.2 Parasitic Capacitance

1.2.1 PCB Layout
To properly layout PCBs that utilize GaN, multiple layer boards are required. Any time when a multilayer
board is designed, copper overlaps between key nets need to be minimized to prevent undesired parasitic
capacitors from being created and hurting performance. One key net that needs to be taken into
consideration is the switch node, which is highlighted on Figure 3. Any capacitance from this node to
ground or input voltage leads to additional energy that is dissipated through the GaN FET during turn on,
increasing switching loss. Layouts that minimize the parasitic inductance by with large ground return
current loop widths can have large parasitic switch node capacitance if not properly accounted for.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
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http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6531683&isnumber=6632912


r0.0886 A
C

h

H
 

Ground

Switch 
Node

Input 
Voltage

Ground

Source Pad

Legend
Metal 1

Metal 2

Vias

Bypass 
Capacitors

Source Pad

Drain Pad
Overlap

Drain Pad

Introduction www.ti.com

4 SNOA946–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Voltage Half Bridge Design Guide for LMG3410 Smart GaN FET

Figure 3. Parasitic Capacitance Example

The parasitic capacitance from a PCB can be approximated with Equation 3 (see SLYP173).

where
• h is the distance between copper layers in cm
• A is the overlapping area in cm2

• εr is the relative permittivity (4.5 for FR-4)
• C is the capacitance in pF (3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
http://www.ti.com/lit/pdf/SLYP173
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For example, if a board that has 5 mils between the switch node and ground return and has an overlap
area of 0.64 cm2 (the area of the LMG3410), then the additional capacitance is 20 pF. The LMG3410
output capacitance is only 90 pF under high Vds bias, which makes this capacitance a significant term that
increases the total effective capacitance by 22%. This capacitance can increase the power loss dissipated
by the LMG3410 during turn on, and can be approximated with Equation 4 (see SLYY071).

where
• fsw is the switching frequency
• Coss is the output capacitance
• VIN is the input switching voltage
• Pcap is the power loss (4)

For example, at 140 kHz and 380 V, a capacitance of 20 pF will increase the loss dissipated by the active
switched LMG3410 by 0.4 W. The capacitance of the ground-return path underneath the die attach pad
(DAP) of the LMG3410 and the switch-node copper needs to be minimized, for example, by increasing the
gap between the different PCB layers and reducing trace widths.

1.2.2 Heatsink
Another source of parasitic capacitance is the heatsink. Typically conductive materials such as aluminum
are used to sink heat away. If one heatsink is used to cool two LMG3410 devices in a half bridge, an
insulating thermal interface material (TIM) is required. The LMG3410 dissipates heat through the die
attached pad (DAP), which is also electrically connected to the source. In a half bridge configuration, this
means the heatsink is capacitive coupled to the switch node and ground.

Figure 4. Parasitic Capacitance from Floating Heatsink Connection in Half Bridge Configuration

By sharing a heatsink in this configuration, a parasitic capacitance exists from switch node to ground. If
the heatsink is grounded, this parasitic capacitance is increased. This means that a large copper plane to
allow for high thermal conductivity to the heatsink may not be optimal for parasitic capacitance. High
thermal conductivity and low parasitic capacitance should be traded off in system level to achieve optimal
performance. Sometimes, it could become necessary to slip top-side and bottom-side heatsinks and
ground differently. Thermal considerations are further discussed in the thermal section.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
http://www.ti.com/lit/pdf/SLYY071
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1.3 Interference
Even with the best design, the power stage switching still causes interference in the bias power and logic
signals. This coupling can disturb sensitive logic signals, especially around the gate drive. Poor layouts
can result in overshoots large enough to inadvertently turn on devices, creating damaging shoot through
events, increase loss with unintended turn-off glitches or corrupting fault signals to trigger false events.
This interference can be reduced by minimizing copper overlaps between nets that have large voltage
swings, such as the switch node. Low pass RC filters on the input and fault signals are recommended to
filter out any undesired ringing.

2 Component Selection
The performance of the LMG3410 is largely dependent on the components that it interfaces with. To
maximize the performance and prevent unforeseen problems from interfering with operation, proper
component such as capacitors, diodes, and integrated circuits need to be selected.

2.1 Decoupling/Bypass Capacitor
Typically for high voltage systems, large bulk film or electrolytic capacitors are used to hold up the DC
bus. While sufficient for low frequency operation, these capacitors do not perform well at the very high
slew rates that the LMG3410 operates at due to their large size and series inductance. To compensate for
this, high quality surface mount capacitors are required to be placed in parallel. High quality ceramics with
X7R or NP0/C0G dielectrics are recommended due to their low variation over temperature and voltage. By
being in surface mount packages the parasitic inductance is significantly reduced and much tighter current
loops can be achieved with the optimal layout discussed earlier, minimizing voltage overshoot during
switching transitions.

The LMG3410 requires three bias power supply bypass capacitors for VDD, LDO5V, and VNEG. To allow
for these capacitors to properly supply the high speed transitions and filter out switching interference, they
need to be placed as close as possible to the LMG3410. Figure 5 shows how to achieve this, with C9
bypassing VNEG, C5 bypassing the 5 V, and C8 bypassing VDD. It is recommended to keep all
components and traces on the same layer.

Figure 5. Layout of Aux Bypass Capacitors (C9, C5, C8)

2.2 Gate Driver
GaN FETs have gate structures that can require tight tolerances or negative voltages. By integrating the
driver, the LMG3410 eliminates all these concerns for designers and only requires a single 12-V nominal
supply.

http://www.ti.com
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2.3 High Side Level and Power Shifting
To supply logic and power to properly drive a high side device, level shifting needs to be provided
externally to the LMG3410. Design considerations need to be taken into consideration when selecting
them, or else they will introduce adverse behaviors that will limit or prevent operation.

2.3.1 High Side Level Shifting
To convert logic signals from the controller to a high side device, a logic level shifter must be used. Digital
isolators are recommended due to their low propagation delay. Isolators with high common mode transient
immunity (CMTI) are required, since many standard isolators are only rated to 50 V/ns or less. Edge
triggered isolators are not recommended since the interference generated by the high slew rates of the
power stage can cause false triggers, causing circuit malfunction. On/off keyed isolators, such as the
Texas Instruments ISO78xxF series isolators, are recommended since simple RC low pass filters on the
inputs can eliminate any false pulses caused by high slew rates.

2.3.2 High Side Isolated Power
The recommended way to power the LMG3410 when it is configured as a high side device is with an
isolated power supply, such as the Texas Instruments DCP010512BP-U. A power supply with low
capacitance from the input to output should be used since this directly leads to additional capacitance at
the switch node, increasing loss and creating a path for the switching transition to introduce interference in
the logic signals.

2.3.3 High Side Bootstrap Power
While a transformer-isolated power supply is recommended to power the LMG3410, a bootstrap supply
can be used with the following recommendations. The LMG3410 can be configured to operate with a
bootstrap supply as Figure 6 shows.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
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Figure 6. LMG3410 Configured as Bootstrap

In order to properly implement the bootstrap supply, there are several design considerations that need to
be taken into consideration. During high frequency operation, the reverse recovery of this diode can
become significant, which limits the minimum pulse widths and becomes a significant source of loss. To
mitigate these problems an ultrafast diode, such as a Micro Commercial UFM15PL-TP, is recommended.
Also, for control purposes in half bridge configurations, the high side device will not power on and clear
any active low fault signal on the FAULT pin until the low side device is turned on to allow the bootstrap
supply to charge.

With bootstrap operation it is recommended to slow down the slew rate during startup to 30 V/ns. This can
be achieved by placing two resistors in parallel from RDRV to ground with one resistor enabled with a
logic FET, as shown with Figure 7. During startup the high side fault signal is low, causing the resistance
at RDRV to be equal to R2, which is 100 kΩ. This sets the slew rate at the minimum 30 V/ns. When the
high side turns on, the high side fault signal turns on QRDRV and the slew rate is changes to the resistance
of R1 in parallel with R2. The desired steady state operating slew rate can be set by R1 as shown with
Equation 5.

http://www.ti.com
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Figure 7. LMG3410 Slew Rate Startup Adjustment Circuit

(5)

One issue that many GaN FET designs have to compensate for is proper regulation of the bias voltage for
the high side. During third-quadrant operation, the voltage drop from source to drain of the bottom FET
may cause the high side bias voltage to overcharge by several volts. By integrating a voltage regulator on
chip to provide the necessary voltages, the LMG3410 mitigates this problem by being able to operate with
a VDD of up to 18 V.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
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3 Thermal Design Considerations
While GaN FETs such as the LMG3410 have less loss when compared to silicon FETs, they can still get
hot when pushed to their operating limits. To insure that these losses do not overheat the device, a
properly designed thermal system is required. While the LMG3410 will protect against extreme over-
temperature events, a properly designed systems will prevent nuisance trips of the fault protection
features.

Figure 8. Typical System Stack Up and Major Thermal Resistance

The LMG3410 is designed to dissipate heat via the bottom of the package. System-level thermal
performance of LMG3410 is influenced by topology, PCB design, thermal interface material (TIM) and
active cooling system. In a typical bottom-cooled configuration, system thermal resistance consists of
parts shown in Figure 8. There are two thermal paths for heat dissipation. The bottom path, depicted by
solid arrows in Figure 8, is the major thermal path. The top path, depicted by dotted arrows in Figure 8, is
minimal compared to the bottom path. In a typical bottom-cooled configuration, where thermal vias, finned
heatsink and sufficient air flow are used, less than 10% of the dissipated heat goes through the top path.
Therefore, thermal resistance of the bottom path dictates the thermal performance of LMG3410 in a
bottom-cooled application. Thermal resistance of the bottom path can be further broken down into
package resistance Rθ(jcbottom), PCB resistance Rθ(PCB), TIM resistance Rθ(TIM), and heatsink resistance
Rθ(heatsink). Junction temperature can be estimated with Equation 6.

Tj = Ploss × Rθja + TA

where
• Tj is junction temperature
• TA is ambient temperature
• Ploss is total dissipated power
• Rθja is the total thermal resistance (6)

http://www.ti.com
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Rθja can be approximated with Equation 7:
Rθja = Rθjc(bottom) + Rθ(PCB) + Rθ(TIM) + Rθ(heatsink)

where
• Rθjc(bottom) is thermal resistance between junction of the die and package DAP
• Rθ(PCB) is thermal resistance of the PCB
• Rθ(TIM) is the thermal resistance of the TIM
• Rθ(heatsink) is the thermal resistance of the heatsink (7)

Since Tj is a constant set by GaN material, reducing Rθja increases the power output of LMG3410 and also
allows LMG3410 to operate at higher ambient temperature. Thermal optimization can be achieved by
reducing Rθjc(bottom), Rθ(PCB), Rθ(TIM), and Rθ(heatsink) (see SPRABI3). Rθjc(bottom) is an intrinsic property of
LMG3410, which has been optimized by package design and material selection. The following discussion
will focus on thermal optimization of LMG3410 via PCB design, TIM selection and heatsink selection.

3.1 PCB Thermal Optimization

3.1.1 Top Copper Layer
Just like electric resistance, thermal resistance is not an intrinsic material property. It is a function of
material thermal conductivity and material dimensions, in a simple one-dimensional case:

where
• t is material thickness
• A is material area
• K is material thermal conductivity (8)

When the heat source area is smaller than the heat drain area, thermal conduction takes a 3-dimensional
form and spreading resistance will come into play (see Spreading Resistance in Cylindrical Semiconductor
Devices). The top surface of the copper layer can be viewed as the heat source, which is defined by the
package thermal pad, and the bottom surface can be viewed as the heat drain. As the copper layer size
increases, due to heat spreading, the effective thermal resistance in the vertical direction decreases and
reaches saturation beyond a certain point, which is determined by the copper thickness. In general, it is
beneficial to have a larger and thicker top copper layer. Since FR4 material in the PCB is a much poorer
thermal conductor, only very limited heat spreading is expected in it. Heat spreading in top copper layer
determines the heat conduction area through the FR4. As Equation 8 shows, increasing the area reduces
the thermal resistance. Therefore, the overall thermal resistance of the PCB is reduced when a larger top
copper layer is used. When other design constraints, electrical performance, cost, board dimensions, and
so forth are satisfied, a larger top copper layer is preferred for thermal optimization.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
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3.1.2 Internal Layers and Thermal Via
Thermal performance of PCB can also be improved by utilizing internal layers and thermal vias, as shown
in Figure 9.

Figure 9. Schematic of a Thermal Via (Not to Scale)

In terms of heat dissipation, internal layers of PCB functions in a similar way as the top copper layer.
These layers spread out the heat flux, increase the heat conduction area, and reduce the overall thermal
resistance of the PCB. Therefore, thick internal layers with high coverage rate are preferred.

Another approach for improving PCB thermal performance is using thermal vias. By connecting the top
copper layer with the bottom layer, thermal vias allow heat flow to bypass the low-thermal-conducting FR4
layers. Therefore, the overall effective thermal conductivity of the PCB is improved. Thermal vias are
normally formed by mechanical drilling. Since air is a poor thermal conductor, a plated copper layer on the
via inner surface is needed to conduct heat vertically through the PCB. For better thermal performance,
higher via plating thickness is preferred. To further improve the effect of thermal vias, the air gap can be
filled with high thermal conductive epoxy or even filled with copper. In terms of thermal performance, it is
beneficial to connect thermal vias with internal copper layers, which promote vertical and lateral heat flow
simultaneously. Therefore, if no electrical isolation is violated, it is preferred to connect thermal vias to the
internal copper layers. More in-depth discussions on thermal vias can be found in (see SNVA419 and
SLMA002).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA946
http://www.ti.com/lit/pdf/SNVA419
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3.2 TIM Thermal Optimization
Thermal interface material (TIM) between the heatsink and PCB is recommended to fully harness the
performance potential of LMG3410. There are many different types of commercially available TIMs, such
as thermal grease, phase change material, thermal gel, adhesive tape, and filled polymer pad.
Constituents, thermal performance, electrical isolation performance, and assembly complexity of these
TIMs are summarized and compared in Table 1, based on a survey of major suppliers.

(1) Only applies to the variants using insulation-reinforcing carriers, such as polyimide film, glass fiber, and PET liner. Other variants
may not be electrically isolative.

Table 1. Commercially Available Thermal Interface Materials

TIM NAME MATERIAL THERMAL
PERFORMANCE

ELECTRICAL
ISOLATION ASSEMBLY

Thermal
Grease

High-thermal conductivity particles (Al2O3 or BN) dispersed
in silicone or non-silicone matrix High No Moderate

Phase
Change
Material

High-thermal conductivity particles (Al2O3 or BN) dispersed
in phase-change polymer (polyolefin, epoxy, polyesters, or
acrylics)
Can be laminated on carriers (Al foil, polyimide, or
fiberglass) for mechanical or dielectric strength

High Yes (1) Difficult

Thermal Gel High-thermal conductivity particles (Al2O3 or BN) dispersed
in silicone or non-silicone matrix Medium No Moderate

Adhesive
Tape

High-thermal conductivity particles dispersed in silicone or
non-silicone matrix and reinforced by glass fiber carrier or
PET liner

Low Yes (1) Easy

Filled Polymer
Pad

High-thermal conductivity particles (Al2O3 or BN) dispersed
in silicone or non-silicone matrix
Reinforced by glass fiber or polyimide film for improved
mechanical and dielectric strength

Medium Yes (1) Moderate

Thickness and thermal conductivity are two of the most important parameters in TIM selection for
LMG3410. Depending on the TIM type, thickness can range from a few microns to a few millimeters. In
general, a thinner TIM is preferred for lower thermal resistance. However, if electrical isolation between
the PCB and the metal heatsink is needed, sufficient TIM thickness and material is needed to guarantee
the required isolation. Additional dielectric strength can be provided by purchasing a TIM where the
thermal conducting polymer composite is laminated to a reinforcing carrier, such as glass fiber and
polyimide film. This lamination approach also improves the mechanical strength of the TIM, which can
prevent shorts caused by punctures from metal burs on the heatsink. Since the reinforcing material tends
to have low thermal conductivity, this lamination approach reduces the overall thermal conductivity of the
TIM.

For applications that require electrical isolation, such as half bridge configurations where two LMG3410
devices share the same heatsink, thermal grease and thermal gel are not recommended due to their poor
and inconsistent dielectric strength. Phase change materials with dielectric reinforcement can excel in both
thermal performance and electrical isolation. However, they tend to form voids over time, which can
potentially create weak spots and compromise the dielectric strength. Therefore they are not
recommended for the LMG3410.

Adhesive tape and filled polymer pad with fiber glass or polyimide reinforcement are recommended for the
LMG3410. In applications where large heat dissipation is expected, filled polymer pad is recommended
due to its better thermal performance. However, filled polymer pads normally require pressure to achieve
their claimed thermal performance. Therefore, a clamping mechanism is needed to press the heatsink to
the PCB, which increases the assembly complexity and increases the system cost. In applications where
a compromise between the thermal performance and the assembly complexity needs to be made,
adhesive tape can be a viable TIM selection. In this case, the heatsink can be directly attached to the PCB
without introducing any clamping mechanism, which reduces the assembly complexity and the system
cost.

http://www.ti.com
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3.3 Heatsink Selection
To improve the thermal dissipation of the LMG3410, a heatsink is recommended. By connecting a
heatsink, the thermal resistance can be reduced since the heat dissipation to the surrounding air is greatly
improved.

Figure 10. Schematic of a Heatsink

Heatsinks are made out of materials with high thermal conductivity, such as aluminum and copper. As
shown in Figure 10, a typical heatsink consists of a base plate and a series of fin plates. To insure the
heatsink conducts heat well a large copper pad connected to the DAP of the LMG3410 needs to be
attached to the base plate. It is important to insure that the pad does not become too large though, since
heatsinks are often times made out of electrically conductive materials and can create undesired parasitic
capacitance that can hurt performance. By having fins the surface area is increased, improving the ability
to dissipate heat into the surrounding air. The amount of heat that a heatsink can dissipate is quantified by
its thermal impedance Rθ(heatsink), which is typically specified in °C/W and ideally is as low as possible. To
insure that this resistance is as small as possible active cooling, which involves blowing air across the fins
with a fan, is recommended for higher power applications. Typical heatsink data sheets include Rθ(heatsink)
and airflow recommendations. It is recommended to select a heatsink by calculating the required Rθ(heatsink)
with Equation 6 and Equation 7, then selecting one with an equal or lower resistance. Excessively large
oversized designs are not recommended since they unnecessarily increase cost and increase parasitic
capacitance impact (see How to Select a Heatsink).

http://www.ti.com
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4 Example PCB Layout
To demonstrate the layout recommendations, an example half bridge layout of two LMG3410 devices is
shown.

Figure 11. Schematic of Example LMG3410 Power Stage

It is recommended to keep all the key components used with the LMG3410 on the same layer. A
multilayer board with a modified layer stack-up to minimize distance between the layer that the
components are on and first internal layer of copper, while maintaining high voltage spacing requirements,
is recommended. The example layout has all the components on the top layer and the mid-layer 1 copper
only has a spacing of 5 mils.
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Figure 12. Top View of Example Power Stage
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Figure 13. Top Copper of Example Power Stage
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Figure 14. Mid-Layer 1 Copper of Example Power Stage

5 Example Results
To demonstrate the design tradeoffs the LMG3410-HB-EVM, which consists of two LMG3410 devices
configured in a half bridge with the discussed design recommendations is measured under operation. As
the waveforms show on Figure 15 when operated at 480-V input, 5-A output, and 100-kHz switching
frequency with 50% duty cycle the voltage overshoot and ringing on the device is low and causes no
problems. The thermal system performance is measured under these operating conditions with a fan
blowing air across the device and heatsink, and as Figure 16 shows the case temperature stays within
recommended operating conditions.

Figure 15. Power Stage Waveforms of LMG3410-HB-EVM
(Top Switch Node Inductor Current, Bottom Switch Node Voltage)
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Figure 16. Thermal Measurement of LMG3410-HB-EVM
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