
Application Report
SWRA466A–February 2015–Revised May 2015

CC2538/CC26xx Serial Bootloader Interface

AasmundBoe

ABSTRACT
This application report provides a brief overview on the serial bootloader that resides in ROM on the
CC2538 and CC13xx/CC26xx devices. This document shows how the bootloader protocol can be used to
perform basic operations like erasing and programming the flash of the devices. The device bootloaders
support universal asynchronous receiver/transmitter (UART) and serial peripheral interface (SPI) as the
protocol transportation layer. The example project is created in Visual Studio®, Visual Studio Express 2010
and utilizes a library called Serial Bootloader Library to demonstrate an implementation of the serial
bootloader protocol on Windows®.

This application report covers UART and is intended to be used with associated example file, which can
be downloaded from the following URL: http://www.ti.com/lit/zip/swra466.

Contents
1 Introduction ... 3
2 ROM Bootloader ... 3
3 Serial Bootloader Library (SBL).. 8
4 Example Project .. 10
5 References .. 16

List of Figures

1 Simplified Flowchart for Entering Bootloader (CC26xx) .. 3
2 Sequence Chart for Send and Receive Protocol .. 6
3 Sequence Chart for Connection Initialization .. 7
4 Sequence Chart for ping Function Call ... 8
5 Successful Execution of the CC2538 Example Application .. 10
6 PC to UART Connection .. 11
7 EM TX and RX Pins on XDS100v3 Emulator Bypass Header ... 11
8 Sequence Chart for initCommunication Function With Uninitialized Bootloader................................... 13
9 Sequence Chart for Flash Page Erase .. 14
10 Sequence Chart for Flash Write.. 15
11 Sequence Chart for CRC32 Command ... 16
12 Sequence Chart for SBL Function Reset ... 16

List of Tables

1 Address of 8-Bit Bootloader Configuration Field (CC2538 variants) .. 4
2 CC2538 Bootloader Backdoor Encoding ... 4
3 Address of 32-Bit Bootloader Configuration Field (CC26xx flash variants) .. 5
4 CC26xx BL_BACKDOOR_CONFIG Parameter Encoding .. 5
5 ROM Bootloader Packet Format .. 5
6 Packet Format Field Description... 5
7 Acknowledge/Not-Acknowledge Response .. 6

Visual Studio, Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries, or both.
All other trademarks are the property of their respective owners.

1SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/lit/zip/swra466
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

www.ti.com

8 Serial Interface Configuration .. 6
9 Possible Status Return Values From Bootloader.. 7
10 SBL Function Return Values ... 8
11 SBL Functions.. 9
12 Device-Specific SBL Functions .. 9
13 Application Example IO Configuration... 12
14 Configuration: deviceType .. 12

2 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Power-On-Reset

CCFG parameter:

FLASH image valid?

Enter ROM bootloader

(Serves commands if

BL enabled)

No

CCFG parameter:

BL backdoor enabled?

Yes

CCFG parameters:

PinNumber.level == Level?

Yes

Enter FLASH application

Yes

No

No

www.ti.com Introduction

1 Introduction
The main purpose of the CC2538 and CC26xx (1) ROM bootloader is to support functionality for
programming a flash image into the device flash over either SPI or UART.

The scope of this document is to show how to use the bootloader to perform basic operations like erasing
and programming flash. This document uses UART as the bootloader transportation layer.

(1) This document refers to the CC13xx/CC26xx device family as CC26xx for shortness.

2 ROM Bootloader
The built-in bootloader on the CC2538 and CC26xx devices start running after a power-on reset if there is
no valid application image in flash, determined by an “image valid” field in the customer configuration area
(CCA/CCFG).

Alternatively, the bootloader start if the so-called bootloader backdoor is enabled and the associated pin
that opens the backdoor is set to the correct logic level. If the bootloader is activated, it is ready for
communicating with an external host 10 ms after power-on-reset.

Since the CC2538 and CC26xx ROM bootloaders support commands that can read the flash, it is also
possible to disable the bootloader entirely for security reasons. The bootloader and backdoor functionality
is configured in the CCA/CCFG.

Figure 1 shows as simplified flow chart for the CC26xx boot code. The flow is similar for CC2538 devices.

Figure 1. Simplified Flowchart for Entering Bootloader (CC26xx)

3SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

ROM Bootloader www.ti.com

2.1 Configuring the Bootloader

2.1.1 CC2538
The customer configuration area for CC2538 is called CCA and is placed in the uppermost flash page, so
the absolute address of the CCA depends on the device flash size. An 8-bit field in the CCA configures
the bootloader backdoor functionality (byte offset 0x7D7). Table 1 lists the absolute address of this byte
for different CC2538 variants.

Table 1. Address of 8-Bit Bootloader Configuration Field (CC2538 variants)

CC2538 Variant Bootloader Configuration Address
Cx2538xF53 (512 KB flash) 0x0027.FFD7
Cx2538xF23 (256 KB flash) 0x0023.FFD7
Cx2538xF11 (128 KB flash) 0x0021.FFD7

The structure of the bootloader configuration byte is shown in Table 2. The pins that can open the
bootloader backdoor are PA0 - PA7. Select which pin to use by writing a value from 0 to 7 in the three
least significant bits of the backdoor configuration byte.

Table 2. CC2538 Bootloader Backdoor Encoding

Bit Field Value Description Default
Value

7-5 Reserved 0 Reserved. Should be all ones. 111b
4 Enabled Enable and disable backdoor function 1

0 Backdoor and bootloader disable
1 Backdoor and bootloader enable

3 Level Sets active level for selected pin on pad A 1
0 Active low
1 Active high

2-0 Pin number The number (0 - 7) of the pin on pad A that is used when backdoor is enable. 111b (7)

4 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

www.ti.com ROM Bootloader

2.1.2 CC26xx
The customer configuration area for CC26xx is called CCFG and is located in the uppermost flash page,
so the absolute address of the CCFG depends on the device flash size (1). A 32-bit field in the CCFG
configures the bootloader and backdoor functionality (byte offset 0xFD8). Table 3 lists the absolute
address of this field for different CC26xx flash versions.

(1) The CC26xx CCFG is also memory mapped with read access to absolute address 0x5000.3000 for all
flash variants.

Table 3. Address of 32-Bit Bootloader Configuration Field (CC26xx flash variants)

CC26xx Variant Bootloader Configuration Address
128 KB 0x0001.FFD8
64 KB 0x0000.FFD8
32 KB 0x0000.7FD8

The structure of the bootloader configuration field is shown in Table 4. The configuration structure is little
endian, meaning that the least significant byte is at the lowest address. Select which pin to use by writing
the DIO number to the second byte of the configuration structure.

Table 4. CC26xx BL_BACKDOOR_CONFIG Parameter Encoding

Bit Field Value Description Byte Default
Offset Value

31-24 Enable Enable and disable bootloader 0xFDB 0xC5
bootloader 0xC5 Bootloader enabled

Any other value Bootloader disabled
23-17 Reserved 0 0xFDA 0xFE

16 Level Sets the active level of the selected pin. 0xFDA
0 Active low
1 Active high

15-8 pinNumber The number of the I/O pin that is level checked if the bootloader 0xFD9 0xFF
backdoor is enabled.

7-0 Enable Enables and disables the bootloader backdoor. 0xFD8 0xC5
backdoor 0xC5 Bootloader enabled

Any other value Bootloader disabled

2.2 Communication Protocol
The CC2538 and CC26xx bootloader uses the same format for receiving and sending packets. The actual
signaling on SPI and UART transportation layers is different, but the packet format remains the same. The
packet format is shown in Table 5 and each field is described in Table 6.

Table 5. ROM Bootloader Packet Format

Size (1 Byte) Checksum (1 Byte) Data byte 1 … Data byte N

Table 6. Packet Format Field Description

Size
Packet Field (bytes) Description
Size 1 The number of bytes in the packet, including the size byte.
Checksum 1 The checksum of the data. The checksum algorithm is the sum of the data bytes truncated to 8

bit.
Checksum = (∑data) mod 256

Data 0-253 The actual data bytes. The first data byte is typically the bootloader’s command byte.

5SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Sender

Send size of packet (1B)

Send packet checksum (1B)

Send Byte 1

...

Send ACK/NACKAwait ACK

Read size

Get checksum

Get Packet Data

Calculate checksum

Send Byte N

Wait for non-zero data

Signal result

Receiver

ROM Bootloader www.ti.com

Packet send and packet receive must adhere to the simple protocol shown in Figure 2. Both the host
device and the CC2538/CC26xx bootloader can act as sender and receiver. The host device becomes the
receiver when it waits for a data response from the bootloader.

For more details about the communication protocol, see the CC2538 ROM User's Guide (SWRU333) [1]
and the CC26xx Technical Reference Manual (SWCU117) [2].

Figure 2. Sequence Chart for Send and Receive Protocol

2.2.1 ACK/NACK
The receiver should respond with an acknowledgment (ACK) or not-acknowledged (NACK) to indicate
whether the command was received properly or not. The ACK and NACK signature is shown in Table 7.

Table 7. Acknowledge/Not-Acknowledge Response

Protocol Byte Value
ACK 0xCC

NACK 0x33

2.3 Interface Configuration

2.3.1 Hardware Pins
The hardware pins used by the ROM bootloader to communicate over UART and SPI are shown in
Table 8.

Table 8. Serial Interface Configuration

CC26xx
Signal CC2538 QFN48/7x7 QFN32/5x5 QFN32/4x4 EM Pin

UART_RX PA0 DIO2 DIO1 DIO1 1.07
UART_TX PA1 DIO3 DIO0 DIO2 1.09
SPI CLK PA2 DIO10 DIO10 DIO8 1.16
SPI CSn PA3 DIO11 DIO9 DIO7 1.14
SPI MOSI PA4 DIO9 DIO11 DIO9 1.18
SPI MISO PA5 DIO8 DIO12 DIO0 1.20

6 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SWRU333
http://www.ti.com/lit/pdf/SWCU117
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Host Boot loader

0x55

0x55

ACK

Bootloader

www.ti.com ROM Bootloader

The bootloader selects the first interface accessed by the external device. The inactive interface (UART or
SPI) will be disabled. To switch to the other interface, the device must be reset using, for example, pin
reset.

2.3.2 UART Configuration
The UART data format is fixed at 8 data bits, no parity, and one stop-bit. The UART bootloader utilizes
auto detection of the baud rate described in Section 2.3.3; therefore, any baud rate below the maximum
can be used.
• Maximum UART baud rate for CC2538: 460800 baud (1)

• Maximum UART baud rate for CC26xx: 1.5 M baud

(1) This data rate number can be doubled if an external 32 MHz crystal oscillator is in use and selected
using the COMMAND_SET_XOSC bootloader command. UART communication must be re-established
after calling this command (see Section 2.3.3).

2.3.3 Establishing Communication
The bare minimum needed to establish communication with the bootloader over UART is shown in
Figure 3, which includes sending two bytes with the value 0x55 to let the device detect the baud rate,
followed by reading the device response, expecting an ACK if the auto baud rate routine was successful. If
the device does not respond to the auto baud bytes, it may not be in bootloader mode, or the baud rate is
not supported.

After a connection has been made, any command can be sent to the bootloader. The complete list of
bootloader commands can be found in [1] and [2] for CC2538 and CC26xx, respectively.

Figure 3. Sequence Chart for Connection Initialization

2.3.4 Status Command
To check the status of the bootloader, the CMD_GET_STATUS command can be used; this should be
used after erasing or writing the flash memory to be sure that the erase and write were successful before
proceeding. The possible status codes for the CMD_GET_STATUS command are shown in Table 9.

Table 9. Possible Status Return Values From Bootloader

Status Definition Value Description
COMMAND_RET_SUCCESS 0x40 Status for successful command
COMMAND_RET_UNKNOWN_CMD 0x41 Status for unknown command
COMMAND_RET_INVALID_CMD 0x42 Status for invalid command (incorrect packet size)
COMMAND_RET_INVALID_ADR 0x43 Status for invalid input address
COMMAND_RET_FLASH_FAIL 0x44 Status for failed attempt to program or erase the flash

7SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Application

ping()

CMD_PING

SBL Bootlloader

SBL_SUCCESS

ACK

Serial Bootloader Library (SBL) www.ti.com

3 Serial Bootloader Library (SBL)
The SBL is a PC library for Microsoft Windows that implements a host API for communicating with the
CC2538 and CC26xx serial bootloaders. The SBL library project is created in Visual Studio C++ Express
2010. The serial bootloader library uses Windows API to communicate with the serial COM port and
therefore is not cross-platform compatible.

All functions in SBL are synchronous; meaning that the function will not return until ACK or NACK have
been received or an error has occurred. Figure 4 demonstrates a sequence chart of the SBL ping()
function.

Figure 4. Sequence Chart for ping Function Call

All bootloader commands can be accessed through functions within SBL; which makes it easy to execute
operations like erasing and writing to the flash memory directly through SBL.

For a more detailed description of the ROM bootloader and how to use all the serial commands, see the
device-specific ROM user’s guide [1] [2].

3.1 SBL Return Values
Each SBL function will return whether the desired operation was successful or not by interpreting the
bootloader response. A list of the possible return values from SBL functions and possible causes for them
are presented in Table 10.

Table 10. SBL Function Return Values

Constant Name Value Cause
SBL_SUCCESS 0 Command successfully executed by bootloader
SBL_ERROR 1 Error during execution of command
SBL_ARGUMENT_ERROR 2 SBL function arguments invalid
SBL_TIMEOUT_ERROR 3 Bootloader response not received within a given number of

tries.
SBL_PORT_ERROR 4 Failed to send data to or receive data from bootloader
SBL_ENUM_ERROR 5 Failed to enumerate COM devices
SBL_UNSUPPORTED_FUNCTION 6 Function is not supported for the chosen hardware

8 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

www.ti.com Serial Bootloader Library (SBL)

3.2 SBL API
An overview of the SBL API is shown in Table 11. API functions that directly map to a bootloader
command are marked with an X.

Table 11. SBL Functions

Bootloader CMD
SBL Function Name CC2538 CC26xx Description
Create NA NA Static function for creating a SBL device object.
calculateCrc32 X X Calculate CRC32 over the specified range.
connect Initialize connection with ROM bootloader
enumerate NA NA Static function for enumerating COM ports on PC.
eraseFlashBank X Erases the entire flash. Not supported by CC2538.
eraseFlashRange X X Erase the sectors in the specified range. Uses

CMD_SECTOR_ERASE.
ping X X Sends ping command.
readDeviceId Uses CMD_MEMORY_READ to read device ID.
readFlashSize Uses CMD_MEMORY_READ to read flash size.
readMemory32 X X Reads 32 bit word from device memory device memory.
readMemory8 Uses CMD_MEMORY_READ to read 8 bit from device

memory.
readRamSize Uses CMD_MEMORY_READ to read RAM size.
readStatus X X Reads bootloader status.
reset X X Resets device using CMD_RESET.
run X Runs the device CPU from the specified address. Not

supported by CC26xx.
setCCFG X Set CC26xx CCFG. Not supported by CC2538.
setXosc X Switch to external oscillator. Not supported by CC26xx.
writeFlashRange X X Writes FLASH using CMD_DOWNLOAD and

CMD_DATA_SEND.
writeMemory32 X X Writes 32-bit word to device memory using

CMD_MEMORY_WRITE.
writeMemory8 Implements 8-bit write to device memory using

CMD_MEMORY_READ and CMD_MEMORY_WRITE.

3.2.1 Device-Specific Functions
There are a few commands in the ROM bootloader that differ between CC2538 and CC26xx, this means
that there are also a few differences in SBL functions for these devices; these differences are presented in
Table 12.

An SBL function that is not supported for the chosen hardware returns the constant
SBL_UNSUPPORTED_FUNCTION without doing anything.

Table 12. Device-Specific SBL Functions

SBL Function
Name CC2538 CC26xx Description
eraseFlashBank() Not supported Supported This erases all the flash sectors for CC26xx; this can be

(COMMAND_BANK achieved for CC2538 by using eraseFlashRange for the
_ERASE) whole Flash memory size.

setCCFG Not supported Supported Not implemented CC2538 bootloader.
(COMMAND_SET_

CCFG)
setXosc Supported Not supported Not implemented CC26xx bootloader.

(CMD_SET_XOSC
run Supported (CMD_RUN) Not supported Not implemented for CC26xx.

9SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Example Project www.ti.com

4 Example Project
The example application for SBL is created for Visual Studio C++ 2010 Express and is tested using the
hardware included in the CC2538 and CC2650 development kits.

SblAppEx is a test application that performs the following actions using the CC2538 or CC26xx ROM
bootloader:
• Erase flash
• Program flash
• Verify flash content
• Reset device

A successful execution of the test application should look similar to Figure 5.

Figure 5. Successful Execution of the CC2538 Example Application

10 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Level shi fter

RS232

UART

TX/RX

USB-to-UART bridge

USB

UART

TX/RX

PC

PC CC26xx

CC26xx

www.ti.com Example Project

4.1 Hardware Setup
The SBL communicates with the ROM bootloader over a serial COM port on the PC. If a built-in COM port
is not available, a USB-to-serial interface can act as a virtual COM port.

Figure 6 demonstrates two different ways to connect the PC to the device: one is using a level shifter to
convert UART signal from RS232 to TTL signals, and the other one is using a USB-to-UART bridge similar
to what is used on the SmartRF06EB [3].

Figure 6. PC to UART Connection

SmartRF06EB Virtual COM Port
SmartRF06EB [3] comes with a built-in support for virtual COM port that can be used together with a
CC2538EM [4] or a CC2650EM [5].

To enable the virtual COM port on SmartRF06EB, a jumper must be mounted on the “Enable UART over
XDS100v3” header and all jumpers on the “XDS100V3 BYPASS” header should be mounted.

4.1.1 External Serial Interface
If a SmartRF06EB is being used and one wants to bypass the XDS100v3 Emulator to use an external
serial interface, connect the external serial interface to the EM RX and EM TX pins on the “XDS100v3
BYPASS” header as shown in Figure 7.

Figure 7. EM TX and RX Pins on XDS100v3 Emulator Bypass Header

11SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Example Project www.ti.com

4.1.2 Bootloader Backdoor
The application image programmed onto the CC2538 and CC26xx devices by the sblAppEx example is
written for the CC2538 and CC2650 (7x7) Evaluation Modules (EMs) and blinks LEDs on the
SmartRF06EB. The firmware image enables the bootloader backdoor, so that the bootloader can be
triggered using an IO pin.

The IO pin used by the application image for opening the bootloader backdoor is shown in Table 13. This
IO pin is connected to the SmartRF06EB SELECT button. To enter the bootloader backdoor, hold down
the SELECT button (corresponds to logic ‘0’) while you press the EM reset button on the SmartRF06EB.

Table 13. Application Example IO Configuration

CC26xx
Signal CC2538 QFN48/7x7 QFN32/5x5 QFN32/4x4 EM Pin
UART_RX PA0 DIO2 DIO1 DIO1 1.07
UART_TX PA1 DIO3 DIO0 DIO2 1.09
Bootloader PA3 DIO11 DIO9 DIO7 1.14
backdoor enable

4.2 Software Setup
The sblAppEx example has two configuration options: device type and baud rate.

4.2.1 Device Type
The device type is configured using the deviceType variable found in sblAppEx.cpp. It controls which
bootloader commands the SBL is allowed to use, and which firmware image the SblAppEx programs onto
the device. The deviceType variable is binary-coded decimal (BCD) of the device name. Table 14 lists the
supported device types and corresponding deviceType value.

Table 14. Configuration: deviceType

Device deviceType Value
CC2538 0x2538
CC13xx/CC26xx 0x2650

4.2.2 Baud Rate
The baud rate is configured by using the baudRate variable found in sblAppEx.cpp. The supported UART
baud rates for CC2538 and CC26xx are covered in Section 2.3.2. The default baud rate is supported by
all devices.

4.3 Program Flow
This section covers the SBL function calls discussed in the sblAppEx example project, which can be
downloaded from: http://www.ti.com/lit/zip/swra466, and the underlying bootloader commands used.

4.3.1 Enumerate COM Ports
The enumerate function in SBL uses the Windows API to list the available COM ports. The first argument
is a pointer to a ComPortElement array. The second argument specifies the maximum number of COM
ports to enumerate. If the COM port to use is known, this function call can be skipped.

4.3.2 Create Device
The SBL must be told which device it’s working with. The Create function supports a single argument, the
supported input values are given in Table 14. The Create function returns an instance of the SblDevice
class that supports the specified hardware.

12 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/zip/swra466
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

BootloaderApplication SBL

www.ti.com Example Project

4.3.3 Connect
The connect function takes two parameters, the COM port number (see Section 4.3.1), and the baud rate
(see Section 2.3.2).

The CC2538 ROM bootloader supports switching from the device’s internal oscillator to an external
oscillator (if available). Switching to an external oscillator increases the maximum baud rate supported by
the CC2538 ROM bootloader. If an external oscillator is to be used, a third argument (boolean TRUE) can
be passed to the connect function, this third parameter is optional and FALSE by default.

To check whether the connection already has been initialized, the SBL’s initCommunication function sends
a dummy command and waits for the bootloader to respond with an ACK. If no connection already exists,
the initCommunication function sends the auto baud rate routine (described in Section 2.3.2), expecting an
ACK from the ROM bootloader. An example of this sequence is shown in Figure 8.

Figure 8. Sequence Chart for initCommunication Function With Uninitialized Bootloader

When the connection has been established, the connect function retrieves the device ID by using the
serial bootloader command CMD_GET_CHIP_ID and FLASH size and RAM size by using the command
CMD_MEMORY_READ to read from a location storing these values.

4.3.4 Erase Flash Range
The eraseFlashRange function uses bootloader command CMD_ERASE for CC2538 and
CMD_SECTOR_ERASE for CC26xx.

The CC26xx CMD_SECTOR_ERASE takes an address parameter and erases the flash sector (4 KB) in
which the address is located.

The CC2538 CMD_ERASE command requires a second argument for specifying the erase size. The
CC2538 bootloader erases the flash sectors (2 KB) that are covered by the range [address, address +
size].

After each bootloader erase command, eraseFlashRange checks the bootloader status using the
CMD_GET_STATUS command.

13SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

CMD_ERASE

SBL Bootloader

ACK

+ 4 byte address

+ 4 byte data size* * only for CC2538

CMD_GET_STATUS

ACK

CMD_RET_STATUS

ACK

Application

eraseFlashRange ()

SBL_SUCCESS

Example Project www.ti.com

Figure 9 shows the sequence chart for a flash erase using the serial bootloader protocol. The last four
bytes in the command that defines the size that needs to be removed is specific for CC2538. For CC26xx,
the CMD_SECTOR_ERASE command (and consequent CMD_GET_STATUS) must be repeated for each
flash sector to erase.

Figure 9. Sequence Chart for Flash Page Erase

If the whole Flash memory is to be erased on CC26xx, the CMD_BANK_ERASE command should be
used. This erases the whole Flash memory in one operation, which is faster than deleting a single sector
at a time.

4.3.5 Write Flash Range
To write data to the flash memory, the SBL function writeFlashRange can be used; this function sends the
CMD_DOWNLOAD command to the bootloader together with the start address and the download size in
bytes. The bootloader is now prepared to receive the specified amount of data and write it to flash, starting
at the specified address.

To transfer the data, the CMD_SEND_DATA command is used. A maximum of 252 bytes of data can be
transferred per CMD_SEND_DATA command. If the data to be downloaded is larger than 252 bytes, the
CMD_SEND_DATA command must be repeated. The SBL writeFlashRange function handles splitting
data transfer into multiple CMD_SEND_DATA commands.

The status of the bootloader should be read after both the CMD_DOWNLOAD command and after each
CMD_SEND_DATA command by using the CMD_GET_STATUS command. This is to ensure that the
start address and firmware size are valid, and that the data was successfully programmed into the flash. If
the status indicates an error, the bootloader’s internal address pointer is not incremented, allowing the
data to be re-transferred.

14 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Bootloader

www.ti.com Example Project

Figure 10 demonstrates the flash write sequence using the SBL function writeFlashRange.

Figure 10. Sequence Chart for Flash Write

4.3.6 Calculate CRC32
To verify that the firmware was successfully programmed into the Flash memory, the SBL function
calculateCrc32 can be used to get a CRC32 checksum of a specified part of the Flash memory from the
bootloader. The calculateCrc32 function uses the command CMD_CRC32 together with a start address
and the number of bytes to include in the CRC32 checksum.

For CC26xx, the bootloader also expects a read repeat count. Setting this to 0x00000000 ensures that the
data locations are only read once.

The CC2538 and CC26xx bootloaders uses the CRC-32-IEEE 802.3 with the following polynomial to
calculate CRC checksum.

CRC32poly = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

15SWRA466A–February 2015–Revised May 2015 CC2538/CC26xx Serial Bootloader Interface
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

Application

reset()

CMD_RESET

SBL Bootloader

SBL_SUCCESS

ACK

CMD_CRC32

SBL Bootloader

ACK

+ 4 byte start address

+ 4 byte data size

4 byte CRC32 checksum

Application

calculateCrc32()

SBL_SUCCESS

ACK

+ 4 byte read repeat* *only for CC26xx

References www.ti.com

An example of how to calculate the checksum using the CRC32poly is implemented in the SBL example
project. The sequence chart for the calculateCrc32 function is shown in Figure 11.

Figure 11. Sequence Chart for CRC32 Command

4.3.7 Reset
To run the firmware after it has been written and verified, the SBL function reset has to be used. The reset
function sends the CMD_RESET command to the bootloader to invoke a reset. The connection between
the host and the device will break after the CMD_RESET command has been sent and an ACK has been
received from the bootloader. The sequence chart for the reset function can be observed in Figure 12.

Figure 12. Sequence Chart for SBL Function Reset

5 References
1. CC2538 ROM User's Guide (SWRU333)
2. CC26xx Technical Reference Manual (SWCU117)
3. SmartRF06 Evaluation Board User's Guide (SWRU321)
4. CC2538DK: http://www.ti.com/tool/CC2538DK
5. CC2650DK: http://www.ti.com/tool/CC2650DK

16 CC2538/CC26xx Serial Bootloader Interface SWRA466A–February 2015–Revised May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SWRU333
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SWRU321
http://www.ti.com/tool/CC2538DK
http://www.ti.com/tool/CC2650DK
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

www.ti.com Revision History

Revision History

Changes from Original (February 2015) to A Revision .. Page

• Update to Table 2 in Section 2.1.1. ... 4

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

17SWRA466A–February 2015–Revised May 2015 Revision History
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA466A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	CC2538/CC26xx Serial Bootloader Interface
	1 Introduction
	2 ROM Bootloader
	2.1 Configuring the Bootloader
	2.1.1 CC2538
	2.1.2 CC26xx

	2.2 Communication Protocol
	2.2.1 ACK/NACK

	2.3 Interface Configuration
	2.3.1 Hardware Pins
	2.3.2 UART Configuration
	2.3.3 Establishing Communication
	2.3.4 Status Command

	3  Serial Bootloader Library (SBL)
	3.1 SBL Return Values
	3.2 SBL API
	3.2.1 Device-Specific Functions

	4 Example Project
	4.1 Hardware Setup
	4.1.1 External Serial Interface
	4.1.2 Bootloader Backdoor

	4.2 Software Setup
	4.2.1 Device Type
	4.2.2 Baud Rate

	4.3 Program Flow
	4.3.1 Enumerate COM Ports
	4.3.2 Create Device
	4.3.3 Connect
	4.3.4 Erase Flash Range
	4.3.5 Write Flash Range
	4.3.6 Calculate CRC32
	4.3.7 Reset

	5 References

	Revision History
	Important Notice

