
 Application Report
 SLUA763 – October 2015

1

Automatic Baud Rate Detection
and Configuration in UCD3138

Emily Hirsch High Performance Isolated Power

Abstract
When there are major changes in temperature, the UCD3138 internal oscillator frequency can
change. See the datasheet for more specific information. There can be a need to implement an
automatic baud rate detection and configuration to improve serial communication between the
primary and secondary stages of a power supply. This application report discusses how to
configure the UCD3138 to match its baud rate to an incoming serial data stream.

Contents
1 Introduction ... 2
2 Timer Capture ... 2

2.1 Overview .. 2
2.2 Timer Capture Registers ... 3
2.3 Timer Capture Polling .. 3

2.3.1 Number of Bits Captured .. 4
3 UART .. 5

3.1 Overview .. 5
3.2 UART0 Baud Divide Registers .. 5
3.3 UART Byte Format .. 6

4 Baud Rate Matching Firmware ... 6
4.1 Timer Value to Baud Rate Translation .. 6
4.2 Different Bit Pulse Widths ... 7

4.2.1 One Bit Pulse .. 8
4.2.2 Two Bit Pulse .. 8
4.2.3 Three Bit Pulse .. 9
4.2.4 Four Bit Pulse ... 10
4.2.5 Five or More Bit Pulse .. 11

5 Installing Code into Existing Program .. 11
5.1 Overview .. 11
5.2 Initialize Timer Capture ... 11
5.3 Timer Capture and Measure Baud Function .. 11
5.4 Match Baud Function ... 14

6 References ... 16

 Application Report
 SLUA763 – October 2015

2

1 Introduction
When using UCD3138s for PFC and LLC applications with serial port communication between
the two, there can be a slight difference in the two oscillators due to temperature. To compensate
for this variation and prevent errors in primary to secondary UART communication, an
automatic baud rate matching solution can be implemented into either PFC or LLC. The PFC
(primary side) and LLC (secondary side) constantly transmit information to each other such as
fault status, operational modes, voltages, and currents. The information used in this solution is
transmitted through UART0 in the PFC and received through UART0 in the LLC. The solution
implements a Timer Capture task inside of the 10kHz timer interrupt to measure the receive baud
rate because we can catch both edges of a 4800 single byte pulse. The solution captures one, two,
three, or four bit long pulses and configures the appropriate UART registers in the LLC to match
the baud rate of the PFC.

2 Timer Capture

2.1 Overview
Timer Capture is implemented using a 24 bit free-running timer in the UCD3138. The 24 bit
timer is configured to capture edges on the UART receive pin. The measure_baud() function
will monitor the waveform. Whenever an edge is captured, the value of the 24 bit counter is
captured and put into the capture register, which is read on every edge of the waveform. On the
first edge (falling edge) the UCD3138 stores the value of the 24 bit counter and on the second
edge (rising edge) it takes the value from the 24 bit counter and subtracts the value found from
the first edge to get the pulse width of the signal. The negative pulse width is capture because the
idle state of the UART is high, so a short time of idle could seem like a pulse width and the
wrong baud rate could be calculated. Figure 2 below represents capturing the positive and
negative edges of a waveform.

Figure 2: Timer Capture on a Waveform

 Application Report
 SLUA763 – October 2015

3

The clock input for the timer is not prescaled with this application and is solely the ICLK,
running at about 15.6MHz. This method uses polling inside of the interrupt service routine to
capture edges, so every 10kHz (the frequency of the 16 bit timer interrupt) the measure baud rate
sequence will be executed using timer capture. This solution works for 4800 bps and below
because the bit time is less than 5KHz with the interrupt at 10 KHz, so we can capture each edge
with a different interrupt. Faster baud rates than 4800 would require a faster interrupt or the timer
capture interrupt. Only the capture block, not the compare block, for the 24 bit timer is used in
this application to collect information about the pulse width of the signal received on the LLC.
There is more information on Timer Capture in Section 4 of the Monitoring and
Communications Programmer’s Manual (Literature Number: SLU996).

2.2 Timer Capture Registers
A few registers for Timer Capture must be set for this application. The input signal for Timer
Capture must be set to the SCI_RX0 pin. In order to ensure that the negative pulse width is being
calculated, the edge must originally be set to capture on the falling edge of the input signal. This
will be changed later in the code so it only captures the negative pulse width. The registers that
must be set, along with the values they need to be set to are shown below:

TimerRegs.T24CAPCTRL.bit.CAP_SEL = 1; //input signal comes from SCI_RX0 pin
TimerRegs.T24CAPCTRL.bit.EDGE = 2; //enable capture on falling edge

2.3 Timer Capture Polling
The timer capture polling can be integrated into the standard interrupt in the LLC code. Every
time the timer interrupt is triggered, all global tasks are handled, and the measure baud function
has been included in the global tasks along with collecting ADC data, averaging ADC readings,
receiving UART data, and calling the pgood handler. The full code is shown in Section 6
Installing Code into Existing Program. Whenever the first falling edge has been captured, the
capture interrupt flag is set and the value of the 24 bit counter is stored into a data register for the
capture module. In order to get the negative pulse length, the edge must be switched to capture
the rising edge. The two edges are captured and the value captured at the falling edge must be
subtracted from the value captured at the rising edge. The measure_baud() function is included
below:

void measure_baud(void)
{
 T24SREG = TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG;

if((T24SREG == 1) && (edge == 0)) //first edge detected
 {
 result = TimerRegs.T24CAPDAT.bit.CAP_DAT; //read and clear
 //enable capture on rising edge

TimerRegs.T24CAPCTRL.bit.EDGE = 1;
 edge = 1; //capture second edge
 }
 else if((T24SREG == 1) && (edge == 1)) //second edge detected
 {
 //read and clear register value
 result = TimerRegs.T24CAPDAT.bit.CAP_DAT – result;
 //result contains pulse width

pulse_width = result; //store result in pulse_width
 //enable capture on falling edge

 Application Report
 SLUA763 – October 2015

4

TimerRegs.T24CAPCTRL.bit.EDGE = 2;
edge = 0; //reset edge to capture first edge again

 }
 else

{
//do nothing

}
}

By reading the CAP_INT_FLAG register into the variable “T24SREG,” the UCD3138 clears the
interrupt flag and stores the flag data into T24SREG. The variable “edge” determines which edge
(first or second) is being captured. “Result” stores the value captured and puts it into the data
register. This result is then stored into “pulse_width” and used in a different function afterwards
to change the baud rate.

2.3.1 Number of Bits Captured
The timer capture interrupt will continually capture pulse widths for every bit sent, so it is
important to understand what bits of each byte could be captured and how long of a pulse the
timer capture will measure. The message sent is from LSB to MSB, which will be explained
further in Section 4.3 UART Byte Format, and the number of bits captured is important because
the baud rate will only be calculated if one, two, three, or four bits are captured. Table 1 below
shows what one, two, three, four, and five bit pulses looks like from the UART or Timer Capture.
As shown, a one bit pulse width is captured whenever there is a one, followed by one zero, then a
one afterward. A two bit pulse is the same except there are two zeroes, a three bit pulse has three
zeroes, and a four bit pulse has four zeroes.

Table 1: Number of Bits Captured for Certain Messages

Value sent (as seen in
code)

Message Sent (as seen
by UART)

Entire Message Sent
with start and stop bits
(as seen by UART)

Possible Number of
Bits Captured

Hexadecimal:0x49
Binary:01001001

Hexadecimal: 0x92
Binary: 10010010

01001001011 1 or 2
match baud possible

Hexadecimal: 0xFD
Binary: 11111101

Hexadecimal: 0xBF
Binary: 10111111

01011111111 1
match baud possible

Hexadecimal: 0x35
Binary: 00110101

Hexadecimal: 0xAC
Binary: 10101100

01010110011 1 or 2
change baud possible

Hexadecimal: 0xC8
Binary: 11001000

Hexadecimal: 0x13
Binary: 00010011

00001001111 2 or 4
match baud possible

Hexadecimal: 0x1A
Binary: 00011010

Hexadecimal: 0x58
Binary: 01011000

00101100011 1, 2, or 3
match baud possible

 Application Report
 SLUA763 – October 2015

5

If there are a variety of bytes being sent with at least a majority of them containing a one to four
bit pulse inside, then there will be a robust form of communication between the primary and
secondary side. With this solution, however, if it does not send any characters that will give a
one to four bit pulse in the byte, this specific automatic baud change application will not work
for it.

3 UART

3.1 Overview
There are two UARTs, or universal asynchronous receiver-transmitters, in UCD3138. These
UARTs are used to transmit information between the primary and secondary sides of the power
supply. For this solution, UART0 is used on both the primary and secondary sides to send and
receive bytes, and the bytes transmitted are used to capture pulse widths of the primary side.
Baud rates are set using the baud divide registers and on the secondary side, they will be changed
after initialization to match the baud rate of the primary side. The received bytes come in to the
data register in the UART receive buffer and can be viewed on the UART0 receive pin of
UCD3138. The transmitted bytes transmit from the UART transmit buffer and can be viewed on
the UART0 transmit pin of UCD3138. More information on UARTs in the UCD3138 can be
found in Section 5 of the Monitoring and Communications Programmer’s Manual.

3.2 UART0 Baud Divide Registers
The baud rate is adjusted using the baud divide registers. There are three divide registers for each
UART, a low divide, middle divide, and high divide (2).The overall register value is found using
Equation 1 shown below, where “register value” represents the overall value that will be split
into low, middle, and high divide values; “ICLK” represents the internal 15.625MHz clock;
“baud” represents the desired baud rate. After determining the overall register value, the low
divide value is found by converting the register value from decimal to hexadecimal, then AND it
with 0xFF. The middle divide value is found by shifting the hexadecimal register value to the
right 8 bits. The high divide value is always zero for this application. At baud rates higher than
38400, the step sizes for the baud divide values are larger and may not be sufficient to use this
type of solution for automatic baud detection and matching.

Equation 1: Register value equation [3]

Hexadecimal: 0xE1
Binary: 11100001

Hexadecimal: 0x87
Binary: 10000111

01000011111 1 or 4
match baud possible

Hexadecimal: 0x83
Binary: 10000011

Hexadecimal: 0xC1
Binary: 11000001

01100000111 1 or 5
match baud possible

Hexadecimal: 0xF0
Binary: 11110000

Hexadecimal: 0x0F
Binary: 00001111

00000111111 5
match baud
impossible

 Application Report
 SLUA763 – October 2015

6

For example, the divide values for a baud rate of 4800 bps are configured using either of these
two sets of statements:

Example 1 [3]:
//BAUD_RATE set to 4800 bps, BAUD_RATE_VALUE and divide values

//are calculated in code, rather than by hand

#define BAUD_RATE 4800
#define BAUD_RATE_VALUE (15625000/ (8* (BAUD_RATE + 1)))
#define BAUD_RATE_VALUE_M (BAUD_RATE_VALUE & 0xFF)
#define BAUD_RATE_VALUE_L (BAUD_RATE_VALUE >> 8)

Uart0Regs.UARTHBAUD.bit.BAUD_DIV_H = 0; //always zero for our purposes
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = BAUD_RATE_VALUE_M;
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = BAUD_RATE_VALUE_L;

Example 2:
 //baud divide values calculated by hand and input directly into code
Uart0Regs.UARTHBAUD.bit.BAUD_DIV_H = 0; //always zero for our purposes
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = 1; //overall register value shifted
right 8 bits
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = 149; //overall register value AND 0xFF

3.3 UART Byte Format
For this application, when a message is sent through UART, it contains a start bit, 8 bits of data
and two stop bits, shown in Figure 3. The idle state is high, so the start bit is always low and the
two stop bits are always high, with the message in between. The message is sent from Least
Significant Bit to Most Significant Bit, so UART0 on the LLC receives the bits from LSB to
MSB.

Figure 3: UART Message Format [2]

4 Baud Rate Matching Firmware

4.1 Timer Value to Baud Rate Translation
After the timer capture interrupt has captured both edges of a pulse, it has a pulse width for an
unknown number of bits between one and nine bits. This bit time is then sent into a function to
change the baud rate for both of the UARTs in the LLC. In this function, even though it changes
the baud rate, the baud rate is never actually calculated in order to save time and memory.
Instead, the formula for translating the bit time to baud rate (Equation A) and the baud rate to the
overall baud value (Equation B) is shortened to an equation taking the bit time and finding the

 Application Report
 SLUA763 – October 2015

7

overall baud value (Equation C or D) in the UART0 register, shown below in Figure 4. After
finding the register value from Equation D, the middle and low divide values are found using the
method explained in Section 4.2 UART0 Baud Divide Registers.

Figure 4: Equations used to Find Register Values [3]

This final equation (Equation D) can only be used if one bit pulse was captured. If more than one
bit pulse was captured, there has to be a compensation to account for the multiple bits acquired.

4.2 Different Bit Pulse Widths
For this application, we only change the baud rate if one, two, or three bit pulses have been
captured and we assume the baud rate will be between +/- 10% from 4800 bps. If the pulse
length is longer than expected for 3 bits at the slowest baud rate or shorter than 1 bit at the fastest
baud rate, the baud rate isn’t changed and the information is treated as an error, or garbage. A
block diagram of the changing baud function is shown in Figure 5.

pass in bit time
from interrupt

one bit
pulse?

start the
function

two bit
pulse?

three bit
pulse?

use original
equation

divide original
equation by 2

divide original
equation by 3

calculate
divide values

calculate
divide values

don’t calculate
divide values

calculate divide
values

yes yes yes

no no no

 Application Report
 SLUA763 – October 2015

8

Figure 5: Flowchart of Baud Rate Configuration

4.2.1 One Bit Pulse
As mentioned before, if a one bit pulse is captured, Equation D from Figure 4 in Section 5.1 is
the function used to calculate the baud divide values from the bit time. Since a one bit pulse is an
exact interpretation of the equations in Figure 4, pulse width times, called “bit_time” in the code,
are calculated using Equation A from Figure 4. The code used to calculate the baud divide values
when a one bit pulse has been found is included below:

 //calculated correct pulse width (+/- 10% from 4800 baud)
 if ((bit_time >= 2950) && (bit_time <= 3260))
 {
 baud_div_value = (bit_time >> 3) – 1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 }

As shown in the code, the bit times for a one bit pulse must be between 2950 and 3260 in order
to calculate the baud divide values. This was determined by taking a baud rate of 4800 bps and
calculating what baud rates would be +/- 10% from 4800 bps and converting that to the bit time.
Table 2.1 below shows the bit time, baud rate, and percent difference from 4800 bps.

Table 2.1: One Bit Pulse Bit Time and Baud Rate

bit time corresponding baud baud with adjustment +/- from 4800
2950 5296 5296 +10.33%
3255 4800 4800 0.00%
3620 4316 4316 -10.08%

4.2.2 Two Bit Pulse
If a two bit pulse is captured, Equation D from Figure 4 in Section 5.1 needs to be modified in
order to account for the longer pulse width captured. Since the time captured is twice the actual
time for one bit, the equation must be divided by two. The equation and code used to calculate
the baud divide values when a two bit pulse has been found are included below:

Equation C Modified:

Equation D Modified: 	

Code:
 //calculated 2 times pulse width (+/- 10% from 4800 baud)

 Application Report
 SLUA763 – October 2015

9

 if ((bit_time >= 5900) && (bit_time <= 7240))
 {
 baud_div_value = ((bit_time >> 4)&0xffff) – 1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 }

As shown in the code, the bit times for a two bit pulse must be between 5900 and 7240 in order
to calculate the baud divide values. This was determined by taking a baud rate of 4800 bps and
determining what baud rates would be +/- 10% from 4800 bps. Those rates must then be divided
by 2 in order to get the “baud rate” that would be calculated for a two bit pulse and converting
that to the bit time. Table 2.2 below shows the bit time, calculated baud rate, baud rate adjusted
to be centered around 4800, and percent difference from 4800 bps.

Table 2.2: Two Bit Pulse Bit Time and Baud Rate

bit time corresponding baud baud with adjustment +/- from 4800
5900 2648 5296 +10.33%
6510 2400 4800 0.00%
7240 2158 4316 -10.08%

4.2.3 Three Bit Pulse
If a three bit pulse is captured, Equation D is divided by three in order to account for capturing
three times the pulse width centered at 4800 bps. The modified equation and code used to
calculate the baud divide values when a three bit pulse has been found are included below:

Equation C Modified:

Equation D Modified:

Code:
 //calculated 3 times pulse width (+/- 10% from 4800 baud)
 if ((bit_time >= 8850) && (bit_time <= 10860))
 {
 baud_div_value = ((bit_time * 2730) >> 16) – 1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 }
As shown in the code, the bit times for a three bit pulse must be between 8850 and 10860 in
order to calculate the baud divide values. This was determined by taking a baud rate of 4800 bps
and calculating what baud rates would be +/- 10% from 4800 bps. Those rates must then be

 Application Report
 SLUA763 – October 2015

10

divided by 3 in order to get the “baud rate” that would be calculated for a three bit pulse and
converting that to the bit time. Table 2.3 below shows the bit time, calculated baud rate, baud
rate adjusted to be centered around 4800, and percent difference from 4800 bps.

Table 2.3: Three Bit Pulse Bit Time and Baud Rate

bit time corresponding baud baud with adjustment +/- from 4800
8850 1765 5295 +10.31%
9765 1600 4800 0.00%
10860 1438 4314 -10.13%

4.2.4 Four Bit Pulse
If a four bit pulse is captured, Equation D is divided by four in order to account for capturing
four times the pulse width centered at 4800 bps. The modified equation and code used to
calculate the baud divide values when a four bit pulse has been found are included below:

Equation C Modified:

Equation D Modified:

Code:
 //calculated 4 times pulse width (+/- 10% from 4800 baud)
 if ((bit_time >= 11801) && (bit_time <= 14481))
 {
 baud_div_value = (bit_time >> 5) – 1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 }

As shown in the code, the bit times for a four bit pulse must be between 11801 and 14481 in
order to calculate the baud divide values. This was determined by taking a baud rate of 4800 bps
and calculating what baud rates would be +/- 10% from 4800 bps. Those rates must then be
divided by 4 in order to get the “baud rate” that would be calculated for a four bit pulse and
converting that to the bit time. Table 2.4 below shows the bit time, calculated baud rate, baud
rate adjusted to be centered around 4800, and percent difference from 4800 bps.

Table 2.4: Four Bit Pulse Bit Time and Baud Rate

bit time corresponding baud baud with adjustment +/- from 4800
11801 1324 5296 +10.33%
13020 1200 4800 0.00%
14481 1079 4316 -10.08%

 Application Report
 SLUA763 – October 2015

11

4.2.5 Five or More Bit Pulse
If a five bit pulse or longer has been captured, the baud rate will not match to the PFC because
going higher than four bits creates an overlap in the bounds between -10% from 4800 with a 5 bit
pulse and +10% from 4800 with a 6 bit pulse so a five and six bit pulse could be difficult to
distinguish from each other.

5 Installing Code into Existing Program

5.1 Overview
Integrating this code into an existing program is relatively simple. The only added code will be
initializing timer capture, integrating timer capture and the measure_baud function into the
standard interrupt service routine, and creating the match_baud function as well as calling it from
the main program.

5.2 Initialize Timer Capture
As mentioned in Section 3.2 Timer Capture Registers, there are a few lines of code that must be
implemented in order to capture edges of the signal. Below is the main LLC code with an
integrated initialization of the timer capture. Added code is in green and code already inside the
LLC code is in black.

void init_TCAP(void)
{
 TimerRegs.T24CAPCTRL.bit.CAP_SEL = 1; //input signal comes
from SCI_RX0 pin
 TimerRegs.T24CAPCTRL.bit.EDGE = 2; //enable capture on
falling edge
}

void main()
{
…
 //Initialize global variables.
 init_variables();
 //Initialize GPIO pins and set initial states.
 init_gpio();
 //Initialize UARTs
 init_uart0();
 init_uart1();
 //Initialize TCAP
 init_TCAP();
 //Initialize DPWMs
 init_dpwms();
…
}

5.3 Timer Capture and Measure Baud Function
The timer capture inside of the measure baud function is implemented into the standard interrupt
service routine. Below is the standard interrupt LLC code with an integrated measure baud
function into the existing code. Everything changed from the original is in green and the original
code is in black.

 Application Report
 SLUA763 – October 2015

12

The measure baud function is a new function to integrate into existing code. It is further
explained in Section 5 Baud Rate Matching Firmware but the entire function has been integrated
into the standard_interrupt.c file with the other functions used in the interrupt service routine.

/* standard_interrupt.c
* measure_baud is called inside of the
* handle_standard_interrupt_global_tasks functions
* it measures the pulse width of the incoming
* signal from the UART on the PFC
*/
void measure_baud(void)
{
 T24SREG = TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG;
 if ((T24SREG == 1) && (edge == 0)) //first edge detected
 {
 result = TimerRegs.T24CAPDAT.bit.CAP_DAT; //read and clear
 edge = 1;
 //increase edge to capture second edge
 }
 else if ((T24SREG == 1) && (edge == 1)) //second edge detected
 {
 result = TimerRegs.T24CAPDAT.bit.CAP_DAT - result;

//result now contains the difference between
edges captured

 pulse_width = result;
 //store result into pulse_width - will be
passed into match_baud();
 edge = 0;
 //reset edge to detect first edge again
 }
 else
 {
 }

}

The measure baud function is called inside of the global tasks function inside of the standard
interrupt.

/* standard_interrupt.c
* handle_standard_interrupt_global_tasks is called in the standard interrupt
* it handles tasks such as polling the ADC and collecting the data,
* receiving UART messages and using Timer Capture
*/
void handle_standard_interrupt_global_tasks(void)
{
 //Collect ADC data
 poll_adc();
 //Average ADC readings;
 average_adc_readings();
 //Receive UART data
 uart_receive_data();
 //call pgood handler
 handle_pgood();

 Application Report
 SLUA763 – October 2015

13

 //measure baud rate with timer capture
 measure_baud();
}

The global tasks function is called inside of the standard interrupt service routine. This is already
implemented; it is shown to further explain where everything has been called.

/*
 * standard_interrupt.c
 * includes measure baud timer capture interrupt function and uart receive
interrupt function
 * as well as standard interrupt
 * the only function changed / used for this application is
handle_standard_interrupt_global_tasks();
 * this function includes the timer capture interrupt and receive data
interrupt
*/
#pragma INTERRUPT(standard_interrupt,IRQ)
void standard_interrupt(void)
{
 //Set a GPIO to signify the beginning of the interrupt
// MiscAnalogRegs.GLBIOVAL.bit.DPWM2A_IO_VALUE = 1;
 //Perform general tasks.
 handle_standard_interrupt_global_tasks();

 switch (supply_state)
 {
 case STATE_IDLE:
 handle_idle_state();
 break;
 case STATE_RAMP_UP:
 handle_ramp_up_state();
 break;
 case STATE_RAMP_DOWN:
 handle_ramp_down_state();
 break;
 case STATE_REGULATED:
 handle_regulation_state();
 break;
 case STATE_VOUT_TRANSITION:
 handle_vout_transition_state();
 break;
 case STATE_LIGHT_LOAD:
 handle_light_load_state();
 break;
 case STATE_CPCC:
 handle_cpcc_state();
 break;
 case STATE_HICCUP:
 handle_hiccup_state();
 break;
 case STATE_FAULT:
 handle_fault_state();
 break;
 }

 Application Report
 SLUA763 – October 2015

14

 //clear interrupt flag by a read/write to register.
 TimerRegs.T16PWM2CMPCTRL.all = 3;
 //Clear the GPIO to signify the end of the interrupt
// MiscAnalogRegs.GLBIOVAL.bit.DPWM2A_IO_VALUE = 0;
}

5.4 Match Baud Function
The match baud function must be implemented in the LLC code and called in the main function
in order for the baud matching to occur.

/*
 * match_baud.c
 *
 * Equations used to find bit times:
 * baud_rate = ICLK / bit_time
 * baud_div_value = ICLK/(8*baud_rate) - 1
 * baud_div_value = bit_time/8 - 1
 * baud_div_value = (bit_time >> 3) - 1
 */
#include "system_defines.h"
#include "cyclone_device.h"
#include "pmbus_commands.h"
#include "pmbus.h"
#include "variables.h"
#include "function_definitions.h"
#include "software_interrupts.h"
#include "cyclone_defines.h"

#define ICLK (15625000)

void match_baud(Uint32 bit_time)
{
 if ((bit_time >= 2950) && (bit_time <= 3620))

//calculated correct pulse width (+/- 10% from 4800 baud)
 {
 baud_div_value = (bit_time >> 3)-1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);

 }
 else if ((bit_time >= 5900) && (bit_time <= 7240))
 //calculated 2x pulse width
 {
 baud_div_value = ((bit_time >> 4) & 0xffff)-1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);

 }

 Application Report
 SLUA763 – October 2015

15

 else if ((bit_time >= 8850) && (bit_time <= 10860))
 //calculated 3x pulse width
 {
 baud_div_value = (((bit_time >> 4) & 0xffff)*2/3)-1;
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);

 }
 else if ((bit_time >= 11801)&&(bit_time <= 14481))
 //calculated 4x pulse width
 {
 baud_div_value = ((bit_time >> 5) - 1);
 Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
 Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
 }
 else
 {
 //don't calculate baud rate
 }

}

The match baud function is called in the main function inside of the infinite loop so that it
continually matches the baud rate.

void main()
{

for(;;)
{

 if (erase_segment_counter > 0)
 {
 //Handle the DFlash segment erases
 erase_task();
 }
 //Run the PMBus handler
 pmbus_handler();
 //Transmit data out the UART
 uart_transmit_data();
 //Process data received from the UART
 uart_process_rx_data();
 //Match baud
 match_baud(pulse_width);

 //output the baud rate from UART1 - used for debug purposes
 char_out_1(Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L);

}
}

 Application Report
 SLUA763 – October 2015

16

6 References
1. B. McDonald, H. Huang. “UCD3138 64 Pin Open Loop Board”. Texas Instruments.

August 2012.
2. UCD3138 Monitoring and Communications Programmer’s Manual. (Literature Number:

SLU996A) Link: http://www.ti.com/lit/pdf/sluu996
3. S. Rajagopalan. Example Code.

Note: Not all Manuals may be up to date

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

